Mann-Kendall test applied to hydrological data – Performance of TFPW and CV2 filters on trend analysis
DOI:
https://doi.org/10.5902/2179460X41928Keywords:
Mann-Kendall test, Trend analysis, Statistical hydrologyAbstract
This study brings an original comparison related to the performance of two filters on trend analysis regarding hydrological time series. We applied the Mann-Kendall test for trend analysis, a non-parametric test widely used in hydrological studies, and Sen’s slope in order to extract the trend magnitude. The presence of autocorrelation tends to impact on trend interpretation erroneously. As most of water resources data presents serial correlation, the use of filters is essential to achieve an accurate analysis regarding temporal variation of the dataset. The filters trend free pre-whitening (TFPW) and variance correction approach (CV2) were applied on monthly time series of precipitation, streamflow, storage and evapotranspiration, from 2002 to 2014, plus eighty synthetic time series. The comparison of the filters performances showed the TFPW filter as much superior, reducing the autocorrelation by at least 71.1%. While the CV2 filter, despite strongly reducing the variance, did not impact the serial correlation (in fact, reduced less than 1% in almost half of the performed simulations). The main difference was related to the precipitation data, from which CV2 suggested a negative trend, while TFPW, besides drastically reducing autocorrelation, showed that the time series does not have a statistically significant trend.
Downloads
References
ACHARJEE TK, VAN HALSEMA G, LUDWIG F, HELLEGERS P. Declining trends of water requirements of dry season Boro rice in the north-west Bangladesh. Agric. Water Manag. 2017;180(Part A):148-159.
ADARSH, S, JANGA REDDY M. Trend analysis of rainfall in four meteorological subdivisions of southern India using nonparametric methods and discrete wavelet transforms. Int. J. Climatol. 2015;35(6):1107-1124.
AHMAD I, TANG D, WANG T, WANG M, WAGAN B. Precipitation trends over time using Mann-Kendall and spearman’s rho tests in swat river basin, Pakistan. Adv meteorol. 2015:1-15.
AL-JUBOORI, AM. Generating Monthly Stream Flow Using Nearest River Data: Assessing Different Trees Models. Water Resour. Manag. 2019;33(9):1-14.
BAYAZIT, M. Nonstationarity of hydrological records and recent trends in trend analysis: a state-of-the-art review. Environ. Process. 2015;2(3):527-542.
BLAIN, GC. The Mann-Kendall test: the need to consider the interaction between serial correlation and trend. Acta Sci. Agron.2013;35(4):393-402.
BLAIN, GC. Removing the influence of the serial correlation on the Mann-Kendall test. Rev. bras. meteorol. 2014;29(2):161-170.
CADENAS E, CAMPOS-AMEZCUA R, RIVERA W, ESPINOSA-
MEDINA MA, MÉNDEZ-GORDILLO AR, RANGEL E, et al. Wind speed variability study based on the Hurst coefficient and fractal dimensional analysis. Energy Sci Eng. 2019;7(2):361-378.
CALOIERO T, COSCARELLI R, FERRARO E, MANCINO M. Trend detection of annual and seasonal rainfall in Calabria (Southern Italy). Int. J. Climatol, 2011;31(1):44-56.
CORREA, MS. Probabilidade e estatística. 2ª ed. Belo Horizonte: PUC Minas Virtual; 2003.
COX DR, STUART A. Some quick sign tests for trend in location and dispersion. Biometrika. 1955;42(1-2):80-95.
CROITORU A, PITICAR A, BURADA DC. Changes in precipitation extremes in Romania. Quat. Int. 2016:325-335.
DARAND M, PAZHOOH F, SALIGHEH M. Trend analysis of tropospheric specific humidity over Iran during 1979–2016. Int. J. Climatol. 2019:39(10):4058-4071.
DEKA RL, MAHANTA C, NATH KK, DUTTA MK. Spatio-temporal variability of rainfall regime in the Brahmaputra valley of North East India. Theoretical and applied climatology. 2016;124(3-4):793-806.
DONG E, YUAN M, DU S, CHEN Z. A new class of Hamiltonian conservative chaotic systems with multistability and design of pseudo-random number generator. Appl. Math. Model. 2019:40-71
FAKHARIZADEHSHIRAZI E; SABZIPARVAR AA; SODOUDI S. Long-term spatiotemporal variations in satellite-based soil moisture and vegetation indices over Iran. Environ. Earth Sci. 2019;78(12):342.
FAN C, MYINT SW, REY SJ, LI W. Time series evaluation of landscape dynamics using annual Landsat imagery and spatial statistical modeling: Evidence from the Phoenix metropolitan region. Int. J. Appl. Earth. Obs. 2017:12-25.
FANG X, LUO S, LYU S. Observed soil temperature trends associated with climate change in the Tibetan Plateau, 1960–2014. Theor. Appl. Climatol. 2019:135(1-2):169-181.
FU G, YU J, YU X, OUYANG R, ZHANG Y, WANG P, et al. Temporal variation of extreme rainfall events in China, 1961–2009. J. Hydrol. 2013:48-59.
GAJBHIYE S, MESHRAM C, MIRABBASI R, SHARMA SK. Trend analysis of rainfall time series for Sindh river basin in India. Theor. Appl. Climatol. 2016;125(3-4):593-608.
GAVRILOV MB, TOŠIĆ I, MARKOVIĆ SB, UNKAŠEVIĆ M,
PETROVIĆ P. Analysis of annual and seasonal temperature trends using the Mann-Kendall test in Vojvodina, Serbia. Idojaras. 2016;120(2):183-198.
GONÇALVES RD, STOLLBERG R, WEISS, H, CHANG HK. Using GRACE to quantify the depletion of terrestrial water storage in Northeastern Brazil: The Urucuia Aquifer System. Sci. Total Environ [Internet]. 2019 [cited 2020 jan 17]. Available from: doi:10.1016/j.scitotenv.2019.135845
GUO H, BAO A, LIU T, JIAPAER G, NDAYISABA F, JIANG L, et al. Spatial and temporal characteristics of droughts in Central Asia during 1966–2015. Sci. Total Environ. 2018:1523-1538.
GUPTA V, JAIN MK. Investigation of multi-model spatiotemporal mesoscale drought projections over India under climate change scenario. J. Hydrol. 2018:489-509.
HAJANI E, RAHMAN A, ISHAK E. Trends in extreme rainfall in the state of New South Wales, Australia. Hydrolog Sci J. 2017;62(13):2160-2174.
HAMED KH, RAO AR. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998;204(182):182-196.
HAMED KH. Exact distribution of the Mann–Kendall trend test statistic for persistent data. J. Hydrol. 2009;365(1): 86-94.
HELSEL DR, HIRSCH RM. Statistical methods in water resources. Reston, VA: US Geological Survey, 2002. p.1-15
HONG, JP. A 0.012 mm 2 and 2.5 mW bang–bang digital PLL using pseudo random number generator. Analog. Integr. Circ. S. 2016;86(1):39-50.
IQBAL Z, SHAHID S, AHMED K, ISMAIL T, NAWAZ N. Spatial distribution of the trends in precipitation and precipitation extremes in the sub-Himalayan region of Pakistan. Theor. Appl. Climatol. 2019:1-15.
KENDALL MG. Rank Correlation Methods. 4ª ed. London: Charles Griffin; 1975.
KHALIQ MN, OURDA TB, GACHON P, SUSHAMA L, ST-
HILAIRE A. Identification of hydrological trends in the presence of serial and cross correlations: A review of selected methods and their application to annual flow regimes of Canadian rivers. J. Hydrol. 2009;368(1-4):117-130.
KINLAW T, SUGG JW, PERRY LB. Warm Season Hydroclimatic
Variability and Change in the Appalachian Region of the Southeastern US from 1950 to 2018. Atmosphere. 2019;10(5):289.
KULKARNI A; VON STORCH H. Monte Carlo experiments on the effect of serial correlation on the Mann-Kendall test of trend. Meteorol. Z. 1995;4(2):82-85.
LAKHRAJ-GOVENDER R, GRAB SW. Temperature trends for coastal and adjacent higher lying interior regions of KwaZulu-Natal, South Africa. Theor. Appl. Climatol. 2019;137(1-2):373-381.
LE BROCQUE AF, KATH J, REARDON-SMITH K. Chronic groundwater decline: A multi-decadal analysis of groundwater trends under extreme climate cycles. J. Hydrol. 2018:976-986.
LI F, ZHANG G, XU YJ. Assessing climate change impacts on water resources in the Songhua River basin. Water. 2016;8(10):420.
MACHIWAL D, MOHARANA PC, KUMAR S, SRIVASTAVA V, BHANDARI SL. Exploring Temporal Dynamics of Spatially-Distributed Groundwater Levels by Integrating Time Series Modeling with Geographic Information System. Geocarto Int. 2019:1-17.
MANN, HB. Non-parametric tests against trend. Econometria. 1945. v. 13. pr, v. 246, 1945.
MULLICK, MR, NUR RM, ALAM MJ, ISLAM KM. Observed trends in temperature and rainfall in Bangladesh using pre-whitening approach. Glob. Planet. Change. 2019:104-113.
ÖNÖZ B, BAYAZIT M. Block bootstrap for Mann–Kendall trend test of serially dependent data. Hydrol. Process. 2012;26(23):1–19.
PAL L, OJHA CS, CHANDNIHA SK, KUMAR A. Regional scale analysis of trends in rainfall using nonparametric methods and wavelet transforms over a semi‐arid region in India. Int. J. Climatol. 2019;39(5):2737-2764.
PATLE GT, LIBANG A, AHUJA S. Analysis of rainfall and temperature variability and trend detection: A non parametric Mann Kendall test approach. In: 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom). 2016 mar 16-18; Nova Deli, India. IEEE; p. 1723-1727.
PIYOOSH AK, GHOSH SK. Effect of autocorrelation on temporal trends in rainfall in a valley region at the foothills of Indian Himalayas. Stoch. Env. Res. Risk. A. 2017;31(8):2075-2096.
PRABHAKAR AK, SINGH KK, LOHANI AK. Regional level long-term rainfall variability assessment using Mann-Kendall test over the Odisha state of India. J Agrometeorol. 2018;20(2):164-165.
RASTOGI R, MITTAL S, SHEKHAR S. Linear Algorithm for Imbricate Cryptography Using Pseudo Random Number Generator. In: 2015 2nd International Conference on Computing for Sustainable Global Development (INDIACom); 2015 mar 11-13; Nova Deli, India. IEEE; p. 89-94.
RODELL M, FAMIGLIETTI JS, CHEN J, SENEVIRATNE SI, VITERBO P, HOLL S, WILSON CR. Basin scale estimates of evapotranspiration using GRACE and other observations. Geophys. Res. Lett. 2004;31(20):10–13.
SANTOS, LH dos. Uso de modelos autoregressivos e gráficos de controle para monitorar volatilidade de ativos financeiros [monografia]. São Paulo: Departamento de Engenharia de Produção/USP; 2007. 136p.
SEN, PK. Estimates of the regression coefficient based on Kendall's tau. J. Am. Stat. Assoc. 1968;63(324):1379-1389.
SHEMEHSAVAR S. On Real Zeros of Self-Similar Random Gaussian Polynomials with Decreasing Variances: Apparition of a Phase Transition. B Iran Math Soc. 2019;45(1):239-255.
SHI F, ZHAO C, ZHOU X, LI X. Spatial Variations of Climate-Driven Trends of Water Vapor Pressure and Relative Humidity in Northwest China. Asia-Pac. J. Atmospheric Sci. 2019;55(2):221-231.
SHIVAM, G.; GOYAL, M. K.; SARMA, A. K. Index-based study of future precipitation changes over Subansiri river catchment under changing climate. J Environ Inform. 2019;34(1):1-14.
SU L, MIAO C, KONG D, DUAN Q, LEI X, HOU Q, et al. Long-term trends in global river flow and the causal relationships between river flow and ocean signals. J. Hydrol. 2018:818-833.
TABARI H, TALAEE PH. Analysis of trends in temperature data in arid and semi-arid regions of Iran. Glob. Planet. Change. 2011a;79(1-2):1-10.
TABARI H, TALAEE PH. Temporal variability of precipitation over Iran: 1966–2005. J. Hydrol. 2011b;396(3-4):313-320.
VIHMA T, GRAVERSEN R, CHEN L, HANDORF D, SKIFIC N, FRANCIS JA, et al. Effects of the tropospheric large‐scale circulation on European winter temperatures during the period of amplified Arctic warming. Int. J. Climatol. 2020;40(1):509-529.
WANG S, HUANG G, LIN J, JU K, WANG L, GONG H. Chinese blue days: a novel index and spatio-temporal variations. Environ. Res. Lett. 2019;14(7):074026.
XU Z, LIU Z, FU G, CHEN Y. Trends of major hydroclimatic variables in the Tarim River basin during the past 50 years. J. Arid Environ. 2010;74(2):256-267.
YAN Z, WANG S, MA D, LIU B, LIN H, LI S. Meteorological Factors Affecting Pan Evaporation in the Haihe River Basin and China. Water.2019;11(2):317.
YUE S, PILON P, PHINNEY B, CAVADIAS G. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Process. 2002;16(9):1807-1829.
YUE S, WANG C. The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour Manag. 2004;18(3):201-218.
ZHANG Q, YU H, SUN P, SINGH V, SHI P. Multisource data based agricultural drought monitoring and agricultural loss in China. Glob. Planet. Change. 2019:298-306.
Downloads
Published
How to Cite
Issue
Section
License
To access the DECLARATION AND TRANSFER OF COPYRIGHT AUTHOR’S DECLARATION AND COPYRIGHT LICENSE click here.
Ethical Guidelines for Journal Publication
The Ciência e Natura journal is committed to ensuring ethics in publication and quality of articles.
Conformance to standards of ethical behavior is therefore expected of all parties involved: Authors, Editors, Reviewers, and the Publisher.
In particular,
Authors: Authors should present an objective discussion of the significance of research work as well as sufficient detail and references to permit others to replicate the experiments. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. Review Articles should also be objective, comprehensive, and accurate accounts of the state of the art. The Authors should ensure that their work is entirely original works, and if the work and/or words of others have been used, this has been appropriately acknowledged. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. Authors should not submit articles describing essentially the same research to more than one journal. The corresponding Author should ensure that there is a full consensus of all Co-authors in approving the final version of the paper and its submission for publication.
Editors: Editors should evaluate manuscripts exclusively on the basis of their academic merit. An Editor must not use unpublished information in the editor's own research without the express written consent of the Author. Editors should take reasonable responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper.
Reviewers: Any manuscripts received for review must be treated as confidential documents. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should be conducted objectively, and observations should be formulated clearly with supporting arguments, so that Authors can use them for improving the paper. Any selected Reviewer who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the Editor and excuse himself from the review process. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.