Monitoring of nitrate contamination in groundwater: case study of the campus of UNESP, Rio Claro/SP

Elias Hideo Teramoto, Pedro Paulo Bazilio da Costa, Roger Dias Gonçalves, Bruno Zanon Engelbrecht, Hung Kiang Chang


This study presents the results of the monitoring of nitrate concentrations in shallow groundwater at the UNESP Campus of Rio Claro/SP assumed to be sourced by septic tank leakage, which were discontinued in October 2014. The distribution of nitrate concentrations provides support to a conceptual model of contamination by multiple sources, since the concentration gradients are not observed along the flowpaths. The results of the monitoring indicate that in some monitored wells, the nitrate concentrations remain stable, while in other wells minor to strong fall trends were observed. These results provide support to the presence of other active sources, such as sewage leakage in the external and internal area of the campus. This scenario perfect fit with the maintenance of recorded high nitrate concentrations over the time. Despite the nitrate concentrations are below potability limit, additional investigations will be conducted to identify sources of contamination to ensure water quality in the future.


Nitrate; Groundwater contamination; Hydrochemistry monitoring; Rio Claro aquifer

Full Text:



APHA. Standard methods for the examination of water and waste water. 2005;21ª Ed. American Public Health Association, Washington, DC.

ARNADE, L.J. Seasonal correlation of well contamination and septic tank distance. Groundwater. 1999;37: 920-923.

BISHOP, P. K.; MISSTEAR, B. D.; WHITE, M.; HARDING, N. J. Impacts of sewers on groundwater quality. Water and Environment Journal. 1998;12:216-223.

BRASIL. Conselho Nacional do Meio Ambiente. Resolução n.º 396, de 7de abril de 2008. Classifica as águas subterrâneas do Território Nacional. Diário Oficial da União, Brasília, 7 de Abril de 2008. p. 64-68


GONÇALVES, R. D.; CHANG, K.H. Condutividade Hidráulica da Formação Rio Claro a partir de Ensaios granulométricos. Holos Environment. 2018;18: 44-58.

GONÇALVES, Roger D. et al. Quasi‐Saturated Layer: Implications for Estimating Recharge and Groundwater Modeling. Groundwater. 2019.

HU, K.; HUANG, Y.; LI, H.; LI, B.; CHEN, D.; WHITE, R. E. Spatial variability of shallow groundwater level, electrical conductivity and nitrate concentration, and risk assessment of nitrate contamination in North China Plain. Environment international. 2005;31:896-903.

HUDAK, P. F. Regional trends in nitrate content of Texas groundwater. Journal of Hydrology. 2000;228:1-2.

JEONG, C.H. Effect of land use and urbanization on hydrochemistry and contamination of groundwater from Taejon area, Korea. Journal of Hydrology. 2001;253:194-210.

KREITLER, C.W.; JONES, D. C. Natural soil nitrate: the cause of the nitrate contamination of ground water in Runnels County, Texas. Groundwater. 1975;13:53-62.

MELO, J. G.; QUEIROZ, M. A.; HUNZIKER, J. Mecanismos e fontes de contaminação das águas subterrâneas de Natal/RN por nitrato. 1998. X Congresso Brasileiro de Águas Subterrâneas.

MONTANHEIRO, F; CHANG, H. K. Nitrato no Aquífero Adamantina: o caso do município de Monte Azul Paulista, SP. Revista Instituto Geológico. 2016;37: 25-44.

NETO, D.C.; CHANG, Hung K.; VAN GENUCHTEN, M.T. A mathematical view of water table fluctuations in a shallow aquifer in Brazil. Groundwater. 2016;54:82-91.

OLIVA, A.; CHANG, K.H.; CAETANO-CHANG, M.R. Determinação da condutividade hidráulica da Formação Rio Claro: análise comparativa através de análise granulométrica e ensaios com permeâmetro guelph e testes de slug. Águas subterrâneas.2005;19:1-17.

OLIVA, A. Estudo hidrofaciológico do aquífero Rio Claro no município de Rio Claro-SP. Dissertação de Mestrado apresentado junto ao Instituto de Geociências e Ciências Exatas da Unesp, Campus de Rio Claro. 2006 244 f.

POWER, J.F.; SCHEPERS, J. S. Nitrate contamination of groundwater in North America. Agriculture, Ecosystems & Environment. 1989;26:165-187.

REYNOLDS, J. H.; BARRETT, M.H. A review of the effects of sewer leakage on groundwater quality. Water and Environment Journal. 2003;17:34-39.

SEILER, R.L. Combined use of 15N and 18O of nitrate and 11B to evaluate nitrate contamination in groundwater. Applied Geochemistry. 2005;20:1626-1636.

STRADIOTO, M. R. & CHANG, H. K. Caracterização Hidroquímica e Isotópica das Aguas Superficiais, Pluviais e Subterrâneas do Município de Rio Claro/SP. XVI Congresso Brasileiro de Aguas Subterrâneas e XVII Encontro Nacional de Perfuradores de Pocos. 2010.

TAI, Y.; DEMPSEY, B. A. Nitrite reduction with hydrous ferric oxide and Fe (II): stoichiometry, rate, and mechanism. Water research. 2009; 43:546-552.

THAMDRUP, B. New pathways and processes in the global nitrogen cycle. Annual Review of Ecology, Evolution, and Systematics. 2012; 43:407-428.

VYSTAVNA, Y.; DIADIN, D.; YAKOVLEV, V.; HEJZLAR, J.; VADILLO, I.; HUNEAU, F.; LEHMANN, M. F. Nitrate contamination in a shallow urban aquifer in East Ukraine: evidence from hydrochemical, stable isotopes of nitrate and land use analysis. Environmental Earth Sciences. 2017;76:463- .

WANG, L.; STUART, M. E.; LEWIS, M. A.; WARD, R. S.; SKIRVIN, D.; NADEN, P. S.; ASCOTT, M. J. The changing trend in nitrate concentrations in major aquifers due to historical nitrate loading from agricultural land across England and Wales from 1925 to 2150. Science of the Total Environment. 2016; 542:694-705.

WEITZBERG, E.; LUNDBERG, J. O. Novel aspects of dietary nitrate and human health. Annual review of nutrition. 2013;33:129-159.

YATES, M.V. Septic tank density and ground‐water contamination. Groundwater. 1985; 23:586-591.



  • There are currently no refbacks.

Copyright (c) 2019 Ciência e Natura

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.