Monitoring of nitrate contamination in groundwater: case study of the campus of UNESP, Rio Claro/SP
DOI:
https://doi.org/10.5902/2179460X33188Keywords:
Nitrate, Groundwater contamination, Hydrochemistry monitoring, Rio Claro aquiferAbstract
This study presents the results of the monitoring of nitrate concentrations in shallow groundwater at the UNESP Campus of Rio Claro/SP assumed to be sourced by septic tank leakage, which were discontinued in October 2014. The distribution of nitrate concentrations provides support to a conceptual model of contamination by multiple sources, since the concentration gradients are not observed along the flowpaths. The results of the monitoring indicate that in some monitored wells, the nitrate concentrations remain stable, while in other wells minor to strong fall trends were observed. These results provide support to the presence of other active sources, such as sewage leakage in the external and internal area of the campus. This scenario perfect fit with the maintenance of recorded high nitrate concentrations over the time. Despite the nitrate concentrations are below potability limit, additional investigations will be conducted to identify sources of contamination to ensure water quality in the future.
Downloads
References
APHA. Standard methods for the examination of water and waste water. 2005;21ª Ed. American Public Health Association, Washington, DC.
ARNADE, L.J. Seasonal correlation of well contamination and septic tank distance. Groundwater. 1999;37: 920-923.
BISHOP, P. K.; MISSTEAR, B. D.; WHITE, M.; HARDING, N. J. Impacts of sewers on groundwater quality. Water and Environment Journal. 1998;12:216-223.
BRASIL. Conselho Nacional do Meio Ambiente. Resolução n.º 396, de 7de abril de 2008. Classifica as águas subterrâneas do Território Nacional. Diário Oficial da União, Brasília, 7 de Abril de 2008. p. 64-68
CASTRO, Sérgio C.S. et al. CONTAMINAÇÃO POR ÁGUA SUBTERRÂNEA EM SÃO JOSÉ DO RIO PRETO (SP)* CONTAMINAÇÃO POR NITRATOS. Águas Subterrâneas, 1992.
GONÇALVES, R. D.; CHANG, K.H. Condutividade Hidráulica da Formação Rio Claro a partir de Ensaios granulométricos. Holos Environment. 2018;18: 44-58.
GONÇALVES, Roger D. et al. Quasi‐Saturated Layer: Implications for Estimating Recharge and Groundwater Modeling. Groundwater. 2019.
HU, K.; HUANG, Y.; LI, H.; LI, B.; CHEN, D.; WHITE, R. E. Spatial variability of shallow groundwater level, electrical conductivity and nitrate concentration, and risk assessment of nitrate contamination in North China Plain. Environment international. 2005;31:896-903.
HUDAK, P. F. Regional trends in nitrate content of Texas groundwater. Journal of Hydrology. 2000;228:1-2.
JEONG, C.H. Effect of land use and urbanization on hydrochemistry and contamination of groundwater from Taejon area, Korea. Journal of Hydrology. 2001;253:194-210.
KREITLER, C.W.; JONES, D. C. Natural soil nitrate: the cause of the nitrate contamination of ground water in Runnels County, Texas. Groundwater. 1975;13:53-62.
MELO, J. G.; QUEIROZ, M. A.; HUNZIKER, J. Mecanismos e fontes de contaminação das águas subterrâneas de Natal/RN por nitrato. 1998. X Congresso Brasileiro de Águas Subterrâneas.
MONTANHEIRO, F; CHANG, H. K. Nitrato no Aquífero Adamantina: o caso do município de Monte Azul Paulista, SP. Revista Instituto Geológico. 2016;37: 25-44.
NETO, D.C.; CHANG, Hung K.; VAN GENUCHTEN, M.T. A mathematical view of water table fluctuations in a shallow aquifer in Brazil. Groundwater. 2016;54:82-91.
OLIVA, A.; CHANG, K.H.; CAETANO-CHANG, M.R. Determinação da condutividade hidráulica da Formação Rio Claro: análise comparativa através de análise granulométrica e ensaios com permeâmetro guelph e testes de slug. Águas subterrâneas.2005;19:1-17.
OLIVA, A. Estudo hidrofaciológico do aquífero Rio Claro no município de Rio Claro-SP. Dissertação de Mestrado apresentado junto ao Instituto de Geociências e Ciências Exatas da Unesp, Campus de Rio Claro. 2006 244 f.
POWER, J.F.; SCHEPERS, J. S. Nitrate contamination of groundwater in North America. Agriculture, Ecosystems & Environment. 1989;26:165-187.
REYNOLDS, J. H.; BARRETT, M.H. A review of the effects of sewer leakage on groundwater quality. Water and Environment Journal. 2003;17:34-39.
SEILER, R.L. Combined use of 15N and 18O of nitrate and 11B to evaluate nitrate contamination in groundwater. Applied Geochemistry. 2005;20:1626-1636.
STRADIOTO, M. R. & CHANG, H. K. Caracterização Hidroquímica e Isotópica das Aguas Superficiais, Pluviais e Subterrâneas do Município de Rio Claro/SP. XVI Congresso Brasileiro de Aguas Subterrâneas e XVII Encontro Nacional de Perfuradores de Pocos. 2010.
TAI, Y.; DEMPSEY, B. A. Nitrite reduction with hydrous ferric oxide and Fe (II): stoichiometry, rate, and mechanism. Water research. 2009; 43:546-552.
THAMDRUP, B. New pathways and processes in the global nitrogen cycle. Annual Review of Ecology, Evolution, and Systematics. 2012; 43:407-428.
VYSTAVNA, Y.; DIADIN, D.; YAKOVLEV, V.; HEJZLAR, J.; VADILLO, I.; HUNEAU, F.; LEHMANN, M. F. Nitrate contamination in a shallow urban aquifer in East Ukraine: evidence from hydrochemical, stable isotopes of nitrate and land use analysis. Environmental Earth Sciences. 2017;76:463- .
WANG, L.; STUART, M. E.; LEWIS, M. A.; WARD, R. S.; SKIRVIN, D.; NADEN, P. S.; ASCOTT, M. J. The changing trend in nitrate concentrations in major aquifers due to historical nitrate loading from agricultural land across England and Wales from 1925 to 2150. Science of the Total Environment. 2016; 542:694-705.
WEITZBERG, E.; LUNDBERG, J. O. Novel aspects of dietary nitrate and human health. Annual review of nutrition. 2013;33:129-159.
YATES, M.V. Septic tank density and ground‐water contamination. Groundwater. 1985; 23:586-591.
Downloads
Published
How to Cite
Issue
Section
License
To access the DECLARATION AND TRANSFER OF COPYRIGHT AUTHOR’S DECLARATION AND COPYRIGHT LICENSE click here.
Ethical Guidelines for Journal Publication
The Ciência e Natura journal is committed to ensuring ethics in publication and quality of articles.
Conformance to standards of ethical behavior is therefore expected of all parties involved: Authors, Editors, Reviewers, and the Publisher.
In particular,
Authors: Authors should present an objective discussion of the significance of research work as well as sufficient detail and references to permit others to replicate the experiments. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. Review Articles should also be objective, comprehensive, and accurate accounts of the state of the art. The Authors should ensure that their work is entirely original works, and if the work and/or words of others have been used, this has been appropriately acknowledged. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. Authors should not submit articles describing essentially the same research to more than one journal. The corresponding Author should ensure that there is a full consensus of all Co-authors in approving the final version of the paper and its submission for publication.
Editors: Editors should evaluate manuscripts exclusively on the basis of their academic merit. An Editor must not use unpublished information in the editor's own research without the express written consent of the Author. Editors should take reasonable responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper.
Reviewers: Any manuscripts received for review must be treated as confidential documents. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should be conducted objectively, and observations should be formulated clearly with supporting arguments, so that Authors can use them for improving the paper. Any selected Reviewer who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the Editor and excuse himself from the review process. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.