Mann-Kendall test applied to hydrological data – Performance of TFPW and CV2 filters on trend analysis

Thais Vieira dos Santos, Lília dos Anjos de Freitas, Roger Dias Gonçalves, Hung Kiang Chang

Abstract


This study brings an original comparison related to the performance of two filters on trend analysis regarding hydrological time series. We applied the Mann-Kendall test for trend analysis, a non-parametric test widely used in hydrological studies, and Sen’s slope in order to extract the trend magnitude. The presence of autocorrelation tends to impact on trend interpretation erroneously. As most of water resources data presents serial correlation, the use of filters is essential to achieve an accurate analysis regarding temporal variation of the dataset. The filters trend free pre-whitening (TFPW) and variance correction approach (CV2) were applied on monthly time series of precipitation, streamflow, storage and evapotranspiration, from 2002 to 2014, plus eighty synthetic time series. The comparison of the filters performances showed the TFPW filter as much superior, reducing the autocorrelation by at least 71.1%. While the CV2 filter, despite strongly reducing the variance, did not impact the serial correlation (in fact, reduced less than 1% in almost half of the performed simulations). The main difference was related to the precipitation data, from which CV2 suggested a negative trend, while TFPW, besides drastically reducing autocorrelation, showed that the time series does not have a statistically significant trend.


Keywords


Mann-Kendall test; Trend analysis; Statistical hydrology

References


ACHARJEE TK, VAN HALSEMA G, LUDWIG F, HELLEGERS P. Declining trends of water requirements of dry season Boro rice in the north-west Bangladesh. Agric. Water Manag. 2017;180(Part A):148-159.

ADARSH, S, JANGA REDDY M. Trend analysis of rainfall in four meteorological subdivisions of southern India using nonparametric methods and discrete wavelet transforms. Int. J. Climatol. 2015;35(6):1107-1124.

AHMAD I, TANG D, WANG T, WANG M, WAGAN B. Precipitation trends over time using Mann-Kendall and spearman’s rho tests in swat river basin, Pakistan. Adv meteorol. 2015:1-15.

AL-JUBOORI, AM. Generating Monthly Stream Flow Using Nearest River Data: Assessing Different Trees Models. Water Resour. Manag. 2019;33(9):1-14.

BAYAZIT, M. Nonstationarity of hydrological records and recent trends in trend analysis: a state-of-the-art review. Environ. Process. 2015;2(3):527-542.

BLAIN, GC. The Mann-Kendall test: the need to consider the interaction between serial correlation and trend. Acta Sci. Agron.2013;35(4):393-402.

BLAIN, GC. Removing the influence of the serial correlation on the Mann-Kendall test. Rev. bras. meteorol. 2014;29(2):161-170.

CADENAS E, CAMPOS-AMEZCUA R, RIVERA W, ESPINOSA-

MEDINA MA, MÉNDEZ-GORDILLO AR, RANGEL E, et al. Wind speed variability study based on the Hurst coefficient and fractal dimensional analysis. Energy Sci Eng. 2019;7(2):361-378.

CALOIERO T, COSCARELLI R, FERRARO E, MANCINO M. Trend detection of annual and seasonal rainfall in Calabria (Southern Italy). Int. J. Climatol, 2011;31(1):44-56.

CORREA, MS. Probabilidade e estatística. 2ª ed. Belo Horizonte: PUC Minas Virtual; 2003.

COX DR, STUART A. Some quick sign tests for trend in location and dispersion. Biometrika. 1955;42(1-2):80-95.

CROITORU A, PITICAR A, BURADA DC. Changes in precipitation extremes in Romania. Quat. Int. 2016:325-335.

DARAND M, PAZHOOH F, SALIGHEH M. Trend analysis of tropospheric specific humidity over Iran during 1979–2016. Int. J. Climatol. 2019:39(10):4058-4071.

DEKA RL, MAHANTA C, NATH KK, DUTTA MK. Spatio-temporal variability of rainfall regime in the Brahmaputra valley of North East India. Theoretical and applied climatology. 2016;124(3-4):793-806.

DONG E, YUAN M, DU S, CHEN Z. A new class of Hamiltonian conservative chaotic systems with multistability and design of pseudo-random number generator. Appl. Math. Model. 2019:40-71

FAKHARIZADEHSHIRAZI E; SABZIPARVAR AA; SODOUDI S. Long-term spatiotemporal variations in satellite-based soil moisture and vegetation indices over Iran. Environ. Earth Sci. 2019;78(12):342.

FAN C, MYINT SW, REY SJ, LI W. Time series evaluation of landscape dynamics using annual Landsat imagery and spatial statistical modeling: Evidence from the Phoenix metropolitan region. Int. J. Appl. Earth. Obs. 2017:12-25.

FANG X, LUO S, LYU S. Observed soil temperature trends associated with climate change in the Tibetan Plateau, 1960–2014. Theor. Appl. Climatol. 2019:135(1-2):169-181.

FU G, YU J, YU X, OUYANG R, ZHANG Y, WANG P, et al. Temporal variation of extreme rainfall events in China, 1961–2009. J. Hydrol. 2013:48-59.

GAJBHIYE S, MESHRAM C, MIRABBASI R, SHARMA SK. Trend analysis of rainfall time series for Sindh river basin in India. Theor. Appl. Climatol. 2016;125(3-4):593-608.

GAVRILOV MB, TOŠIĆ I, MARKOVIĆ SB, UNKAŠEVIĆ M,

PETROVIĆ P. Analysis of annual and seasonal temperature trends using the Mann-Kendall test in Vojvodina, Serbia. Idojaras. 2016;120(2):183-198.

GONÇALVES RD, STOLLBERG R, WEISS, H, CHANG HK. Using GRACE to quantify the depletion of terrestrial water storage in Northeastern Brazil: The Urucuia Aquifer System. Sci. Total Environ [Internet]. 2019 [cited 2020 jan 17]. Available from: doi:10.1016/j.scitotenv.2019.135845

GUO H, BAO A, LIU T, JIAPAER G, NDAYISABA F, JIANG L, et al. Spatial and temporal characteristics of droughts in Central Asia during 1966–2015. Sci. Total Environ. 2018:1523-1538.

GUPTA V, JAIN MK. Investigation of multi-model spatiotemporal mesoscale drought projections over India under climate change scenario. J. Hydrol. 2018:489-509.

HAJANI E, RAHMAN A, ISHAK E. Trends in extreme rainfall in the state of New South Wales, Australia. Hydrolog Sci J. 2017;62(13):2160-2174.

HAMED KH, RAO AR. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998;204(182):182-196.

HAMED KH. Exact distribution of the Mann–Kendall trend test statistic for persistent data. J. Hydrol. 2009;365(1): 86-94.

HELSEL DR, HIRSCH RM. Statistical methods in water resources. Reston, VA: US Geological Survey, 2002. p.1-15

HONG, JP. A 0.012 mm 2 and 2.5 mW bang–bang digital PLL using pseudo random number generator. Analog. Integr. Circ. S. 2016;86(1):39-50.

IQBAL Z, SHAHID S, AHMED K, ISMAIL T, NAWAZ N. Spatial distribution of the trends in precipitation and precipitation extremes in the sub-Himalayan region of Pakistan. Theor. Appl. Climatol. 2019:1-15.

KENDALL MG. Rank Correlation Methods. 4ª ed. London: Charles Griffin; 1975.

KHALIQ MN, OURDA TB, GACHON P, SUSHAMA L, ST-

HILAIRE A. Identification of hydrological trends in the presence of serial and cross correlations: A review of selected methods and their application to annual flow regimes of Canadian rivers. J. Hydrol. 2009;368(1-4):117-130.

KINLAW T, SUGG JW, PERRY LB. Warm Season Hydroclimatic

Variability and Change in the Appalachian Region of the Southeastern US from 1950 to 2018. Atmosphere. 2019;10(5):289.

KULKARNI A; VON STORCH H. Monte Carlo experiments on the effect of serial correlation on the Mann-Kendall test of trend. Meteorol. Z. 1995;4(2):82-85.

LAKHRAJ-GOVENDER R, GRAB SW. Temperature trends for coastal and adjacent higher lying interior regions of KwaZulu-Natal, South Africa. Theor. Appl. Climatol. 2019;137(1-2):373-381.

LE BROCQUE AF, KATH J, REARDON-SMITH K. Chronic groundwater decline: A multi-decadal analysis of groundwater trends under extreme climate cycles. J. Hydrol. 2018:976-986.

LI F, ZHANG G, XU YJ. Assessing climate change impacts on water resources in the Songhua River basin. Water. 2016;8(10):420.

MACHIWAL D, MOHARANA PC, KUMAR S, SRIVASTAVA V, BHANDARI SL. Exploring Temporal Dynamics of Spatially-Distributed Groundwater Levels by Integrating Time Series Modeling with Geographic Information System. Geocarto Int. 2019:1-17.

MANN, HB. Non-parametric tests against trend. Econometria. 1945. v. 13. pr, v. 246, 1945.

MULLICK, MR, NUR RM, ALAM MJ, ISLAM KM. Observed trends in temperature and rainfall in Bangladesh using pre-whitening approach. Glob. Planet. Change. 2019:104-113.

ÖNÖZ B, BAYAZIT M. Block bootstrap for Mann–Kendall trend test of serially dependent data. Hydrol. Process. 2012;26(23):1–19.

PAL L, OJHA CS, CHANDNIHA SK, KUMAR A. Regional scale analysis of trends in rainfall using nonparametric methods and wavelet transforms over a semi‐arid region in India. Int. J. Climatol. 2019;39(5):2737-2764.

PATLE GT, LIBANG A, AHUJA S. Analysis of rainfall and temperature variability and trend detection: A non parametric Mann Kendall test approach. In: 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom). 2016 mar 16-18; Nova Deli, India. IEEE; p. 1723-1727.

PIYOOSH AK, GHOSH SK. Effect of autocorrelation on temporal trends in rainfall in a valley region at the foothills of Indian Himalayas. Stoch. Env. Res. Risk. A. 2017;31(8):2075-2096.

PRABHAKAR AK, SINGH KK, LOHANI AK. Regional level long-term rainfall variability assessment using Mann-Kendall test over the Odisha state of India. J Agrometeorol. 2018;20(2):164-165.

RASTOGI R, MITTAL S, SHEKHAR S. Linear Algorithm for Imbricate Cryptography Using Pseudo Random Number Generator. In: 2015 2nd International Conference on Computing for Sustainable Global Development (INDIACom); 2015 mar 11-13; Nova Deli, India. IEEE; p. 89-94.

RODELL M, FAMIGLIETTI JS, CHEN J, SENEVIRATNE SI, VITERBO P, HOLL S, WILSON CR. Basin scale estimates of evapotranspiration using GRACE and other observations. Geophys. Res. Lett. 2004;31(20):10–13.

SANTOS, LH dos. Uso de modelos autoregressivos e gráficos de controle para monitorar volatilidade de ativos financeiros [monografia]. São Paulo: Departamento de Engenharia de Produção/USP; 2007. 136p.

SEN, PK. Estimates of the regression coefficient based on Kendall's tau. J. Am. Stat. Assoc. 1968;63(324):1379-1389.

SHEMEHSAVAR S. On Real Zeros of Self-Similar Random Gaussian Polynomials with Decreasing Variances: Apparition of a Phase Transition. B Iran Math Soc. 2019;45(1):239-255.

SHI F, ZHAO C, ZHOU X, LI X. Spatial Variations of Climate-Driven Trends of Water Vapor Pressure and Relative Humidity in Northwest China. Asia-Pac. J. Atmospheric Sci. 2019;55(2):221-231.

SHIVAM, G.; GOYAL, M. K.; SARMA, A. K. Index-based study of future precipitation changes over Subansiri river catchment under changing climate. J Environ Inform. 2019;34(1):1-14.

SU L, MIAO C, KONG D, DUAN Q, LEI X, HOU Q, et al. Long-term trends in global river flow and the causal relationships between river flow and ocean signals. J. Hydrol. 2018:818-833.

TABARI H, TALAEE PH. Analysis of trends in temperature data in arid and semi-arid regions of Iran. Glob. Planet. Change. 2011a;79(1-2):1-10.

TABARI H, TALAEE PH. Temporal variability of precipitation over Iran: 1966–2005. J. Hydrol. 2011b;396(3-4):313-320.

VIHMA T, GRAVERSEN R, CHEN L, HANDORF D, SKIFIC N, FRANCIS JA, et al. Effects of the tropospheric large‐scale circulation on European winter temperatures during the period of amplified Arctic warming. Int. J. Climatol. 2020;40(1):509-529.

WANG S, HUANG G, LIN J, JU K, WANG L, GONG H. Chinese blue days: a novel index and spatio-temporal variations. Environ. Res. Lett. 2019;14(7):074026.

XU Z, LIU Z, FU G, CHEN Y. Trends of major hydroclimatic variables in the Tarim River basin during the past 50 years. J. Arid Environ. 2010;74(2):256-267.

YAN Z, WANG S, MA D, LIU B, LIN H, LI S. Meteorological Factors Affecting Pan Evaporation in the Haihe River Basin and China. Water.2019;11(2):317.

YUE S, PILON P, PHINNEY B, CAVADIAS G. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Process. 2002;16(9):1807-1829.

YUE S, WANG C. The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour Manag. 2004;18(3):201-218.

ZHANG Q, YU H, SUN P, SINGH V, SHI P. Multisource data based agricultural drought monitoring and agricultural loss in China. Glob. Planet. Change. 2019:298-306.




DOI: https://doi.org/10.5902/2179460X41928

Copyright (c) 2020 Ciência e Natura

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 

DEAR AUTHORS,

PLEASE, CHECK CAREFULLY BEFORE YOUR SUBMISSION:

1. IF ALL AUTHORS "METADATA" (ORCID, LINK TO LATTES, SHORT BIOGRAPHY, AFFILIATION) WERE ADDED,

2. THE CORRECT IDIOM YOUR SECTION,

3 IF THE HIGHLIGHTS WERE ADDED,

4. IF THE GRAPHIC ABSTRACTS WAS ADDED,

5. IF THE REVIEWERS INDICATION WAS DONE,

6. IF THE REFERENCES FORMAT ARE CORRECT(ABNT)

7. IF THE RESOLUTION YOUR FIGURES (600 DPI) ARE SUITABLE

8.  IF THE STATEMENT BY THE ETHICS COMMITTEE (IF IT INVOLVES HUMANS) WAS ADDED;

9. IF THE DECLARATION OF ORIGINALITY WAS ADDED.

10. IF THE TEXT IS ORIGINAL. IF THE IDEA HAS ALREADY BEEN REGISTERED IN SUMMARY FORM, OR PUBLISHED IN CONGRESS ANNUALS, PLEASE INFORM THE EDITOR.