Obtaining zeros of functions using Python

Authors

DOI:

https://doi.org/10.5902/2179460X40478

Keywords:

Bissecção, Posição Falsa, Newton-Raphson

Abstract

HNumerical Methods are very important in Engineering because many real problems have complicated mathematical models that are difficult to be solved analytically. Thus, the methods of resolution for several problems that are studied in the discipline of Computational Numerical Methods, as well as in the discipline of Algorithms, are indispensable for the formation of a future Engineer. Among the several numerical methods that exist, the following are the methods for obtaining zeros of functions: Bisection, False Position and Newton-Raphson. The Bisection method consists of defining the range containing a root and, using the arithmetic mean, dividing it until the desired precision is reached. In the case of the False Position method, the weighted arithmetic mean is used to obtain the approximate root. Finally, although Newton-Raphson's method has faster convergence than the others, the drawback of this method is the need to use the derivative of the studied function. Thus, in some cases, this method may be impracticable. In this work, the methods mentioned will be implemented in the Python programming language. In this work, the mentioned methods are implemented in the Python programming language, in order to strengthen programming knowledge in the formation of Engineers, as well as to emphasize the importance of applying numerical methods in practical problems of various engineering areas.

Downloads

Download data is not yet available.

Author Biographies

David Lucas Pereira, Universidade Federal de Santa Maria, Cachoeira do Sul, RS

Universidade Federal de Santa Maria, Campus Cachoeira do Sul, Brasil

Ana Luisa Soubhia, Universidade Federal de Santa Maria, Cachoeira do Sul, RS

Universidade Federal de Santa Maria, Campus Cachoeira do Sul, Brasil

Aline Brum Loreto, Universidade Federal de Santa Maria, Cachoeira do Sul, RS

Universidade Federal de Santa Maria, Campus Cachoeira do Sul, Brasil

References

BURIAN R, LIMA A, HETEM A. Cálculo numérico. Rio de Janeiro: LTC, 2007.

CHAPRA C. Métodos numéricos aplicados com Matlab para engenheiros e cientistas, 3ª edição. Porto Alegre: AMGH, 2013.

FRANCO N. Cálculo numérico, Pearson Education, 2006.

ELISA H, MARCELO S, ROGÉRIO A, IVANETE S, LUCIANE S. Para Além da Computação Estatística: O uso do Ambiente R para o ensino de Métodos Numéricos rev. Renote [internet] v. 14, n. 1 (2016). Available from: https://seer.ufrgs.br/renote/issue/view/3640/showToc.

LEITE M. SciLab. Uma Abordagem Prática e Didática, Ciência Moderna, 2a edição, 2015.

MENEZES N. Introdução à Programação com Python, 3ed, São Paulo/SP: Ed. Novatec, 2019.

NAGAR N. Introduction to Octave: For Engineers and Scientists, Apress; Edição: 1st ed, 2017.

RUGGIERO M., LOPES V. Cálculo Numérico: Aspectos Teóricos e Computacionais, 2a edição. São Paulo: Pearson Education do Brasil, 1997.

Published

2020-02-07

How to Cite

Pereira, D. L., Soubhia, A. L., & Loreto, A. B. (2020). Obtaining zeros of functions using Python. Ciência E Natura, 42, e10. https://doi.org/10.5902/2179460X40478