The generalized discrete Half-Normal distribution: an alternative distribution for analysing count data

Authors

DOI:

https://doi.org/10.5902/2179460X36214

Keywords:

Discretization, Generalized Half-Normal Distribution, Method of moments, Monte Carlo simulation, Likelihood

Abstract

In general, data that are obtained by counting processes, strictly discrete or discretized (from truncations and/or rounding), are analyzed, without exhaustion, by the Geometric, Logarithmic, Poisson and Negative Binomial distributions. In recent years a large number of discrete distributions have been proposed in the literature from the discretization of continuous random variables. Many of the discretization methods preserve one or more characteristics of the continuous version, with the proposal of Nakagawa e Osaki (1975) being the most used. In this paper, from this methodology, which makes use of the survival function, we propose the discrete version of the continuous generalized Half-Normal distribution, introduced in the literature by Cooray e Ananda (2008). Some of its properties are discussed and Monte Carlo simulations evaluate the bias and accuracy of the estimates obtained by the maximum likelihood method and method of moments. Some discrete data sets found in the literature are considered to illustrate the applicability of the proposed distribution.

Downloads

Download data is not yet available.

Author Biographies

Josmar Mazucheli, Universidade Estadual de Maringá, Maringá, PR

Professor adjunto da Universidade Estadual de Maringá

Ricardo Puziol de Oliveira, Universidade de São Paulo - USP, Ribeirão Preto, SP

Doutor em Bioestatística e Epidemiologia pelo programa Saúde Pública da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo - FMRP/USP

Jean Carlos Cardoso, Universidade Estadual de Maringá, Maringá, PR

Pós-Graduando no Programa de Pós-graduação em Bioestatística, Departamento de Estatística, Universidade Estadual de Maringá, Maringá, Paraná, Brasil

References

Aghababaei Jazi, M., Lai, C. D., Hossein Alamatsaz, M. (2010). A discrete inverse Weibull distribution and estimation of its parameters. Statistical Methodology, 7, 121–132. DOI: https://doi.org/10.1016/j.stamet.2009.11.001

Almalki, S. J., Nadarajah, S. (2014). A new discrete modified Weibull distribution. IEEE Transactions on Reliability, 63(1), 68–80. DOI: https://doi.org/10.1109/TR.2014.2299691

Bakouch, H. S., Jazi, M. A., Nadarajah, S. (2014). A new discrete distribution. Statistics, 48(1), 200–240. DOI: https://doi.org/10.1080/02331888.2012.716677

Bracquemond, C., Gaudoin, O. (2003). A survey on discrete lifetime distributions. International Journal of Reliability, Quality and Safety Engineering, 10(1), 69–98. DOI: https://doi.org/10.1142/S0218539303001007

Chakraborty, S. (2015). Generating discrete analogues of continuous probability distributions - A survey of methods and constructions. Journal of Statistical Distributions and Applications, 1(1), 1–30. DOI: https://doi.org/10.1186/s40488-015-0028-6

Chakraborty, S., Chakravarty, D. (2012). Discrete gamma distributions: Properties and parameter estimations. Communications in Statistics-Theory and Methods, 41(18), 3301–3324. DOI: https://doi.org/10.1080/03610926.2011.563014

Chakraborty, S., Chakravarty, D. (2014). A discrete Gumbel distribution. arXiv preprint arXiv:14107568.

Collett, D. (2003). Modelling Survival Data in Medical Research, 2 o edn. Chapaman and Hall, New York.

Cooray, K., Ananda, M. M. A. (2008). A generalization of the Half-Normal distribution with applications to lifetime data. Communications in Statistics - Theory and Methods, 37(9), 1323–1337. DOI: https://doi.org/10.1080/03610920701826088

Cox, D. R., Snell, E. J. (1968). A general definition of residuals. Journal of the Royal Statistical Society Series B (Methodological), 30(2), 248–275. DOI: https://doi.org/10.1111/j.2517-6161.1968.tb00724.x

Ghosh, T., Roy, D., Chandra, N. K. (2013). Reliability approximation through the discretization of random variables using reversed hazard rate function. International Journal of Mathematical, Computational, Statistical, Natural and Physical Engineering, 7(4), 96 – 100.

Gómez-Déniz, E., Calderín-Ojeda, E. (2011). The discrete Lindley distribution: properties and applications. Journal of Statistical Computation and Simulation, 81(11), 1405–1416. DOI: https://doi.org/10.1080/00949655.2010.487825

Good, I. J. (1953). The population frequencies of species and the estimation of population parameters. Biometrika, 40(3-4), 237–264. DOI: https://doi.org/10.1093/biomet/40.3-4.237

Hussain, T., Ahmad, M. (2014). Discrete inverse Rayleigh distribution. Pak J Statist, 30(2), 203–222.

Kemp, A. W. (2004). Classes of discrete lifetime distributions. Communications in Statistics - Theory and Methods, 33(12), 3069–3093. DOI: https://doi.org/10.1081/STA-200039051

Khan, M., Khalique, A., Abouammoh, A. (1989). On estimating parameters in a discrete Weibull distribution. IEEE Transactions on Reliability, 38, 348–350. DOI: https://doi.org/10.1109/24.44179

Klein, J. P., Moeschberger, M. L. (1997). Survival Analysis: Techniques for Censored and Truncated Data. Springer-Verlag, New York.

Krishna, H., Pundir, P. S. (2007). Discrete Maxwell distribution. Interstat.

Krishna, H., Pundir, P. S. (2009). Discrete Burr and discrete pareto distributions. Statistical Methodology, 6(2), 177–188. DOI: https://doi.org/10.1016/j.stamet.2008.07.001

Lai, C. D. (2013). Issues concerning constructions of discrete lifetime models. Quality Technology & Quantitative Management, 10(2), 251–262. DOI: https://doi.org/10.1080/16843703.2013.11673320

Lawless, J. F. (2003). Statistical Models and Methods for Lifetime Data, 2 o edn. Wiley Series in Probability and Statistics, John Wiley & Sons, Hoboken, NJ. DOI: https://doi.org/10.1002/9781118033005

Lee, E. T., Wang, J. W. (2003). Statistical Methods for Survival Data Analysis, 3 o edn. Wiley Series in Probability and Statistics, Wiley-Interscience [John Wiley & Sons], Hoboken, NJ. DOI: https://doi.org/10.1002/0471458546

Mazucheli, J., Dey, S. (2018). Bias-corrected maximum likelihood estimation of the parameters of the generalized Half-Normal distribution. Journal of Statistical Computation and Simulation, 88(6), 1027–1038. DOI: https://doi.org/10.1080/00949655.2017.1413649

Mazucheli, J., Oliveira, R. P., Peralta, D., Emanuelli, I. P. (2018). Application of discrete Burr XII distribution in the analysis of animal production data. Ciência & Natura, 40(1), 1–10. DOI: https://doi.org/10.5902/2179460X28307

Nakagawa, T., Osaki, S. (1975). The discrete Weibull distribution. IEEE Transactions on Reliability, R-24(5), 300–301. DOI: https://doi.org/10.1109/TR.1975.5214915

Oliveira, R. P., Mazucheli, J., Achcar, J. A. (2017). A comparative study between two discrete Lindley distributions. Ciência & Natura, 39(3), 539–552. DOI: https://doi.org/10.5902/2179460X25186

Pearson, K. (1895). Contributions to the mathematical theory of evolution. ii. skew variation in homogeneous material. Philosophical Transactions of the Royal Society of London A, 186, 343–414. DOI: https://doi.org/10.1098/rsta.1895.0010

Roy, D., Dasgupta, T. (2001). A discretizing approach for evaluating reliability of complex systems under stress-strength model. IEEE transactions on reliability, 50(2), 145–150. DOI: https://doi.org/10.1109/24.963121

Stein, W. E., Dattero, R. (1984). A new discrete Weibull distribution. IEEE Transactions on Reliability, 33(2), 196–197. DOI: https://doi.org/10.1109/TR.1984.5221777

Published

2019-07-16

How to Cite

Mazucheli, J., Oliveira, R. P. de, & Cardoso, J. C. (2019). The generalized discrete Half-Normal distribution: an alternative distribution for analysing count data. Ciência E Natura, 41, e27. https://doi.org/10.5902/2179460X36214

Issue

Section

Statistics

Most read articles by the same author(s)