CONVECTIVE PARAMETRIZATION AND EXPICITY SIMULATION: SENSIBILITY TESTS FOR AMAZONIAN CONVECTIVE SYSTEMS

Authors

  • Vagner Anabor UFSM
  • Franciano Scremin Puhales UFSM
  • Everson Dal Piva UFSM
  • Otávio Costa Acevedo UFSM

DOI:

https://doi.org/10.5902/2179460X20293

Keywords:

Tropical Convective Systems. Convective parametrization.

Abstract

The WRF(Weather Research and Forecastiong Model) is used to simulate Mesoscale Convective Systems occurred between 18-21 june 2014 close to ZF-2/LBA experimental site, Manuas, AM, Brazil. The main objective is to verify the convective parametrization Betts-MillerJanjic, a deep layer controled scheme, and Kain-Fritsch, a low level control scheme in simulations of tropical storms over the Amazon. The simulation least 72h with nested domains of 12 and 3 km. The evolution of convective systems, convective mode, cold pools and outdrafts were observed. The convective scheme Kain-Fritsch reproduced realistics storms with convective mode, propagation and downdrafts which resembles the usual observations.

Downloads

Download data is not yet available.

Author Biographies

Vagner Anabor, UFSM

Departament de Física/Meteorologia

Franciano Scremin Puhales, UFSM

Departament de Física/Meteorologia

Everson Dal Piva, UFSM

Departament de Física/Meteorologia

Otávio Costa Acevedo, UFSM

Departament de Física/Meteorologia

References

Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677–691.

Betts, A. K., and M. J. Miller, 1986: A new convective adjustment scheme.Part II: Single column tests using GATE wave, BOMEX, ATEX and Arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112,693– 709.

Emanuel, K. A., and M. Zˇivkovic ́-Rothman, 1999: Development and evaluation of a convection scheme for use in climate models. J.Atmos. Sci., 56, 1766–1782.

Hong, Song–You, Jimy Dudhia, and Shu–Hua Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103– 120.

Janjic ́, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927–945.

Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170–181.

——, and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch s:cheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

Nesbitt, S. W., R. Cifelli, and S. A. Rutledge, 2006: Storm morphology and rainfall characteristics of TRMM precipitation features. Mon. Wea. Rev., 134, 2702-2721.

Stensrud, D. J.: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models, Cambridge University Press, New York, 459 pp., 2007.

Johns, R. H. and C. A. Doswell III (1992). Severe local storms forecasting. Wea. Forecasting, 7, 588-612.

Published

2016-07-20

How to Cite

Anabor, V., Puhales, F. S., Piva, E. D., & Acevedo, O. C. (2016). CONVECTIVE PARAMETRIZATION AND EXPICITY SIMULATION: SENSIBILITY TESTS FOR AMAZONIAN CONVECTIVE SYSTEMS. Ciência E Natura, 38, 467–476. https://doi.org/10.5902/2179460X20293

Most read articles by the same author(s)

<< < 3 4 5 6 7 8 

Similar Articles

You may also start an advanced similarity search for this article.