WRF-chem Simulation of a Saharan dust Outbreak over the Mediterranean Regions

Authors

  • Umberto Rizza CNR-ISAC: Institute of Atmospheric Sciences and Climate
  • Vagner Anabor Departamento de Física, Universidade Federal de Santa Maria, Santa Maria, RS
  • Cristina Mangia CNR-ISAC, Instituto do Clima e Ciências Atmosféricas, Itália
  • Mario Marcello Miglietta CNR-ISAC, Instituto do Clima e Ciências Atmosféricas, Itália
  • Gervasio Annes Degrazia Departamento de Física, Universidade Federal de Santa Maria, Santa Maria, RS
  • Giorgio Passerini UNIVPM, Ancona, Itália

DOI:

https://doi.org/10.5902/2179460X20249

Keywords:

Sahara Dust. WRF-Chem simulations. Dispersion of aerosols. GOCART aerosol model.

Abstract

A fully coupled meteorology-chemistry-aerosol model (WRF-Chem) is applied to simulate the Saharan dust outbreak over the Mediterranean regions. Two dust emission schemes, namely, those of Jones et al., (2010), and Shao (2001) are evaluated using the the GOCART aerosol model. To investigate the performance of each dust emission scheme, a case study was carried out for a Mediterranean dust event that took place between 21 and 23 May 2014. Considering the time average Aerosol Optical Depth, simulation results reproduced satisfactorily the outbreak and transport pattern of dust plumes. However, the estimated dust emission amounts in each scheme differ greatly due to the presence of several tuning parameters, that must be adjusted considering satellite and ground based experimental data.

Downloads

Download data is not yet available.

Author Biography

Umberto Rizza, CNR-ISAC: Institute of Atmospheric Sciences and Climate

Senior Scientist

References

Alpert, P., Kaufman, Y.J., Shay-El, Y., Tanre, D., da Silva, A., Schubert, S., Joseph, J.H. (1998). Quantification of dust-forced heating of the lower troposphere. Nature 395, 367–370.

Bohren C. F., and D. R. Huffman (1983). Absorption and scattering of light by small particles[M]. John Wiley & Sons.

Chin, M., Rood, R.B., Lin, S.-J., Muller, J. F., Thomspon, A. M. (2000). Atmospheric sulfur cycle in the global model GOCART: Model description and global properties, J. Geophys. Res., 105, 24,671-24,687.

Choobari, O. A., Zawar-Reza, P., Sturman, A. (2014). The global distribution of mineral dust and its impacts on the climate system: a review, Atmos. Res., 138, 152–165, doi:10.1016/j.atmosres.2013.11.007.

Freitas, S. R., Longo, K. M., Alonso, M. F., Pirre, M., Marecal, V., Grell, G., Stockler, R., Mello, R. F., Sanchez Gacita, M. (2011). PREP-CHEM-SRC 1.0: a preprocessor of trace gas and aerosol emission fields for regional and global atmospheric chemistry models. Geoscientific Model Development, v. 4, p. 419-433.

Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., Eder, B. (2005). Fully coupled “online” chemistry within the WRF model, Atmos. Environ., 39, 6957– 6976.

Goudie, A. S., Middleton, N. J. (2001). Saharan dust storms: nature and consequences, Earth.-Sci. Rev., 56, 179–204, doi:10.1016/S0012-8252(01)00067-8.

Griffin, D. W., Kellogg, C.A. (2004). Dust storms and their impact on ocean and human health: dust in Earth’s atmosphere. EcoHealth 1.3,284-295.

Huneeus, N., Schulz, M., Balkanski, Y., Griesfeller, J., Prospero, J., Kinne, S., ... & Zender, C. S. (2011). Global dust model intercomparison in AeroCom phase I. Atmospheric Chemistry and Physics, 11(15).

Liu, C. M., Young, C.Y., Lee Y.C. (2006). Influence of Asian dust storms on air quality in Taiwan, Sci. Total Environ., 368, 884–897, doi:10.1016/j.scitotenv.2006.03.039.

Jones, S. L., et al. (2010). Adapting WRF-CHEM GOCART for Fine-Scale Dust Forecasting. AGU Fall Meeting Abstracts. Vol. 1.

Kaufman, Y. J., Tanre, D., Remer, L. A., Vermote, E. F., Chu, A., Holben, B. N., (1997). Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer, J. Geophys. Res., 102, 17051–17067.

Klose, M., Shao, Y. (2012). Stochastic parameterization of dust emission and application to convective atmospheric conditions." Atmospheric Chemistry and Physics 12.16: 7309-7320.

Mallone, S., Stafoggia, M., Faustini, A., Gobbi, G.P., Marconi, A., Forastiere, F. (2011). Saharan dust and associations between particulate matter and daily mortality in Rome, Italy. Environmental health perspectives, 119(10), 1409.

Marticorena, B., Bergametti, G. (1995). Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme, J. Geo- phys. Res., 100, 16415–16430.

Mlawer, E. J., Taubman, S.J., Brown, P.D., Iacono, M.J., Clough, S.A. (1997). Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, J Geophys Res-Atmos, 102(D14), 16663-16682.

Kang, J. Y., Yoon, S. C., Shao, Y., Kim, S. W. (2011). Comparison of vertical dust flux by implementing three dust emission schemes in WRF/Chem, Journal of Geophysical Research: Atmospheres (1984–2012), 116(D9), Chicago.

Shao, Y. (2001). A model for mineral dust emission, J. Geophys. Res., 106(D17), 20,239–20,254, doi:10.1029/2001JD900171.

Shao, Y. (2004). Simplification of a dust emission scheme and comparison with data, J. Geophys. Res., 109, D10202, doi:10.1029/2003JD004372.

Tegen, I., Lacis, A. A., Fung, I. (1996). The influence on climate forcing of mineral aerosols from disturbed soils, Nature, 380, 419–422, doi:10.1038/380419a0.

Uno, I., Wang, Z., Chiba, M., Chun, Y. S., Gong, S. L., Hara, Y., ... & Westphal, D. L. (2006). Dust model intercomparison (DMIP) study over Asia: Overview. Journal of Geophysical Research: Atmospheres (1984–2012), 111(D12).

Downloads

Published

2016-07-20

How to Cite

Rizza, U., Anabor, V., Mangia, C., Miglietta, M. M., Degrazia, G. A., & Passerini, G. (2016). WRF-chem Simulation of a Saharan dust Outbreak over the Mediterranean Regions. Ciência E Natura, 38, 330–336. https://doi.org/10.5902/2179460X20249

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 10 > >>