Spatial and Temporal Assessment of Water Quality data Using Multivariate Statistical Techniques

Authors

  • Nícolas Reinaldo Finkler Universidade de Caxias do Sul
  • Taison Anderson Bortolin Universidade de Caxias do Sul
  • Jardel Cocconi Universidade de Caxias do Sul
  • Ludmilson Abritta Mendes Universidade Federal de Sergipe
  • Vania Elisabete Schneider Universidade de Caxias do Sul

DOI:

https://doi.org/10.5902/2179460X18168

Keywords:

Principal Component Analysis (PCA). Cluster Analysis (CA). Urban Hydrographic Basin.

Abstract

The natural factors and anthropogenic activities that contribute to spatial and temporal variation in superficial waters in Caxias do Sul’s urban hydrographic basins were determined applying multivariate analysis of data. The techniques used in this study were Principal Component Analysis and Cluster Analysis. The monitoring was executed in 12 sampling stations, during January, 2009 to January, 2010 with monthly periodicity in total of 13 campaigns. Between chemical, biological and physical, 20 parameters were analyzed. The results state that with the use of ACP, a data variance of 70.94% was observed. Therefore, it testifies that major pollutants that contribute to a water quality variation in the county are classified as domestic and industrial pollutants, mainly from galvanic industry. Moreover, two clusters were found which differentiated regarding their location and distance from areas with a high human density, corroborating on identifying of impact due to human activities in urban rivers.

Downloads

Download data is not yet available.

References

Abdi, H. (2003). Factor Rotations in Factor Analyses. Encyclopedia of Social Sciences, In: Lewis-Beck M., Bryman,

A., Futing T. (Eds.), Research Methods. The University of Texas at Dallas. Thousand Oaks.

Albuquerque, M.A. (2005). Estabilidade em análise de agrupamento (cluster analysis). Biometry Masters Thesis. Recife: Universidade Federal Rural de Pernambuco.

Coletti, C.; Testezlafl, R.; Ribeiro, T.A.P.; Souza, R.T.G. de; Pereira, D. de A. (2009). Water quality index using multivariate factorial analysis. Revista Brasileira de Engenharia Agrícola e Ambiental, 14, 517-522.

Fan, X.; Cui, B.; Zhao, H.; Zhang, Z.; Zhang, H. (2010). Assessment of river water quality in Pearl River Delta using multivariate statistical techniques. Procedia Environmental Sciences. 2, 1220-1234.

Ferreira Jr., S.; Baptista, A.J.M.S.; Lima, J.E. (2004). A Modernização Agropecuária nas Microrregiões do Estado de Minas Gerais. RER. 42, 3-89.

França, M.S. (2009). Análise estatística multivariada dos dados de monitoramento de qualidade de água da Bacia do Alto Iguaçu: uma ferramenta para a gestão de recursos hídricos. Water Resources and Environmental Engineering Masters Thesis. Curitiba: Universidade Federal do Paraná.

Hussain, M.; Ahmedb, S. M.; Abderrahmanc W. (2008). Cluster analysis and quality assessment of logged water at an irrigation project, eastern Saudi Arabia. Journal of Environmental Management. 86, 297-307.

IBGE. (2013). Instituto Brasileiro de Geografia e Estatística. Produto Interno Bruto dos Municípios 2010. Cidades@.<http://www.ibge.gov.br/cidadesat/comparamun/compara.php?coduf=43&idtema=103&codv=v05&or der=dado&dir=desc&lista=uf&custom=>. Accessed on 6 sep. 2014.

Kaiser, H.F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187-200.

Kazama, F.; Shrestha, S. (2007). Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environmental Modelling & Software. 22, 464-475.

Krishna, A.K.; Satyanarayanan, M.; Govil, P.K. (2009). Assessment of heavy metal pollution in water using multivariate statistical techniques in an industrial area: A case study from Patancheru, Medak District, Andhra Pradesh, India. Journal of Hazardous Materials. 167, 366-373.

Liu, S.; Manson, J.E.; Stampfer, M.J.; Hu, F.B.; Giovannucci, E.; Colditz, G.A.; Hennekens, C,H.; Willett, W.C. (2003). A prospective study of whole-grain intake and risk of type 2 diabetes mellitus in US women. Am J Public Health. 90,

-1415.

Mardia, K. V.; Kent, J. T.; Bibby, J. (1979). Multivariate analysis, ed. Academic, London.

Mustonen, S.M.; Tissari, S.; Huikko, L.; Kolehmainen, M.; Lehtolab, M.J.; Hirvonen, A. (2008). Evaluating online data of water quality changes in a pilot drinking water distribution system with multivariate data exploration methods. Water Research. 42, 2421-2430.

Noori, R.; Sabahi, M.S.; Karbassi, A.R.; Baghvand, A.; Zadeh, H.T. (2010). Multivariate statistical analysis of surface water quality based on correlations and variations in the data set. Desalination. 260, 129-136.

Ouyang, Y. (2005). Evaluation of river quality monitoring stations by principal component analysis. Water Research. 39, 2621-2635.

Pinto, U.; Maheshwari, B.L. (2011). River health assessment in peri-urban landscapes: An application of multivariate analysis to identify the key variables. Water Research. 45, 3915-3924.

Rencher, A. (2002). Methods of multivariate analysis, second ed John Wiley & Son, New York.

Rodrigues, P.M.S.M.; Rodrigues, R.M.M.; Costa, B.H.F.; Martins, A.L.T.; Silva, J.C.G.E. (2010). Multivariate analysis of the water quality variation in the Serra da Estrela (Portugal) Natural Park as a consequence of road deicing with salt. Chemometrics and Intelligent Laboratory Systems. 102, 130-135.

Simeonov, V.; Stratis, J.A.; Samara, C.; Zachariadis, G.; Voutsa, D.; Anthemidis, A.; Sofoniou, M.; Kouimtzis, T. (2003). Assessment of the surface water quality in northen Greece. Water Research. 37, 4119-4124.

Singh, K. P.; Basant, A.; Malik, A.; Jain, G. (2009). Artificial neural network modeling of the river water quality – a case study. Ecological Modelling. 220, 888-895.

Singh, K.P.; Malik, A.; Mohan, D.; Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India) – a case study. Water Research. 38, 3980-3992.

Toledo, L.G. de; Nicolella, G. (2002). Índice de qualidade de água em microbacia sob uso agrícola e urbano. Scientia Agricola. 59, 181-186.

Varol, M., Gökot, B., Bekleyen, A., Sen, B. (2011). Water quality assessment and apportionment of pollution sources of Tigris River (Tukey) using multivariate statistical technique – A case study. River Research and Applications. 27, 1553-1564.

Vega, M.; Pardo, R.; Barrado, E.; Deban, L. (1998). Assessement of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Research. 32, 3581-3592.

Vicini, L.; Souza, A.M. (2005). Análise multivariada da teoria à prática. Senior design project. Santa Maria: Universidade Federal de Santa Maria, CCNE, Manual.

Wang, X.; Cai, Q.; Ye, L.; Qu, X. (2012). Evaluation of spatial and temporal variation in stream water quality by multivariate statistical techniques: A case study of the Xiangxi River basin, China. Quaternary International. 282, 137-144.

Downloads

Published

2016-05-31

How to Cite

Finkler, N. R., Bortolin, T. A., Cocconi, J., Mendes, L. A., & Schneider, V. E. (2016). Spatial and Temporal Assessment of Water Quality data Using Multivariate Statistical Techniques. Ciência E Natura, 38(2), 577–587. https://doi.org/10.5902/2179460X18168

Issue

Section

Statistics

Most read articles by the same author(s)