Spatial and Temporal Assessment of Water Quality data Using Multivariate Statistical Techniques
DOI:
https://doi.org/10.5902/2179460X18168Keywords:
Principal Component Analysis (PCA). Cluster Analysis (CA). Urban Hydrographic Basin.Abstract
The natural factors and anthropogenic activities that contribute to spatial and temporal variation in superficial waters in Caxias do Sul’s urban hydrographic basins were determined applying multivariate analysis of data. The techniques used in this study were Principal Component Analysis and Cluster Analysis. The monitoring was executed in 12 sampling stations, during January, 2009 to January, 2010 with monthly periodicity in total of 13 campaigns. Between chemical, biological and physical, 20 parameters were analyzed. The results state that with the use of ACP, a data variance of 70.94% was observed. Therefore, it testifies that major pollutants that contribute to a water quality variation in the county are classified as domestic and industrial pollutants, mainly from galvanic industry. Moreover, two clusters were found which differentiated regarding their location and distance from areas with a high human density, corroborating on identifying of impact due to human activities in urban rivers.Downloads
References
Abdi, H. (2003). Factor Rotations in Factor Analyses. Encyclopedia of Social Sciences, In: Lewis-Beck M., Bryman,
A., Futing T. (Eds.), Research Methods. The University of Texas at Dallas. Thousand Oaks.
Albuquerque, M.A. (2005). Estabilidade em análise de agrupamento (cluster analysis). Biometry Masters Thesis. Recife: Universidade Federal Rural de Pernambuco.
Coletti, C.; Testezlafl, R.; Ribeiro, T.A.P.; Souza, R.T.G. de; Pereira, D. de A. (2009). Water quality index using multivariate factorial analysis. Revista Brasileira de Engenharia Agrícola e Ambiental, 14, 517-522.
Fan, X.; Cui, B.; Zhao, H.; Zhang, Z.; Zhang, H. (2010). Assessment of river water quality in Pearl River Delta using multivariate statistical techniques. Procedia Environmental Sciences. 2, 1220-1234.
Ferreira Jr., S.; Baptista, A.J.M.S.; Lima, J.E. (2004). A Modernização Agropecuária nas Microrregiões do Estado de Minas Gerais. RER. 42, 3-89.
França, M.S. (2009). Análise estatística multivariada dos dados de monitoramento de qualidade de água da Bacia do Alto Iguaçu: uma ferramenta para a gestão de recursos hídricos. Water Resources and Environmental Engineering Masters Thesis. Curitiba: Universidade Federal do Paraná.
Hussain, M.; Ahmedb, S. M.; Abderrahmanc W. (2008). Cluster analysis and quality assessment of logged water at an irrigation project, eastern Saudi Arabia. Journal of Environmental Management. 86, 297-307.
IBGE. (2013). Instituto Brasileiro de Geografia e Estatística. Produto Interno Bruto dos Municípios 2010. Cidades@.<http://www.ibge.gov.br/cidadesat/comparamun/compara.php?coduf=43&idtema=103&codv=v05&or der=dado&dir=desc&lista=uf&custom=>. Accessed on 6 sep. 2014.
Kaiser, H.F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187-200.
Kazama, F.; Shrestha, S. (2007). Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environmental Modelling & Software. 22, 464-475.
Krishna, A.K.; Satyanarayanan, M.; Govil, P.K. (2009). Assessment of heavy metal pollution in water using multivariate statistical techniques in an industrial area: A case study from Patancheru, Medak District, Andhra Pradesh, India. Journal of Hazardous Materials. 167, 366-373.
Liu, S.; Manson, J.E.; Stampfer, M.J.; Hu, F.B.; Giovannucci, E.; Colditz, G.A.; Hennekens, C,H.; Willett, W.C. (2003). A prospective study of whole-grain intake and risk of type 2 diabetes mellitus in US women. Am J Public Health. 90,
-1415.
Mardia, K. V.; Kent, J. T.; Bibby, J. (1979). Multivariate analysis, ed. Academic, London.
Mustonen, S.M.; Tissari, S.; Huikko, L.; Kolehmainen, M.; Lehtolab, M.J.; Hirvonen, A. (2008). Evaluating online data of water quality changes in a pilot drinking water distribution system with multivariate data exploration methods. Water Research. 42, 2421-2430.
Noori, R.; Sabahi, M.S.; Karbassi, A.R.; Baghvand, A.; Zadeh, H.T. (2010). Multivariate statistical analysis of surface water quality based on correlations and variations in the data set. Desalination. 260, 129-136.
Ouyang, Y. (2005). Evaluation of river quality monitoring stations by principal component analysis. Water Research. 39, 2621-2635.
Pinto, U.; Maheshwari, B.L. (2011). River health assessment in peri-urban landscapes: An application of multivariate analysis to identify the key variables. Water Research. 45, 3915-3924.
Rencher, A. (2002). Methods of multivariate analysis, second ed John Wiley & Son, New York.
Rodrigues, P.M.S.M.; Rodrigues, R.M.M.; Costa, B.H.F.; Martins, A.L.T.; Silva, J.C.G.E. (2010). Multivariate analysis of the water quality variation in the Serra da Estrela (Portugal) Natural Park as a consequence of road deicing with salt. Chemometrics and Intelligent Laboratory Systems. 102, 130-135.
Simeonov, V.; Stratis, J.A.; Samara, C.; Zachariadis, G.; Voutsa, D.; Anthemidis, A.; Sofoniou, M.; Kouimtzis, T. (2003). Assessment of the surface water quality in northen Greece. Water Research. 37, 4119-4124.
Singh, K. P.; Basant, A.; Malik, A.; Jain, G. (2009). Artificial neural network modeling of the river water quality – a case study. Ecological Modelling. 220, 888-895.
Singh, K.P.; Malik, A.; Mohan, D.; Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India) – a case study. Water Research. 38, 3980-3992.
Toledo, L.G. de; Nicolella, G. (2002). Índice de qualidade de água em microbacia sob uso agrícola e urbano. Scientia Agricola. 59, 181-186.
Varol, M., Gökot, B., Bekleyen, A., Sen, B. (2011). Water quality assessment and apportionment of pollution sources of Tigris River (Tukey) using multivariate statistical technique – A case study. River Research and Applications. 27, 1553-1564.
Vega, M.; Pardo, R.; Barrado, E.; Deban, L. (1998). Assessement of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Research. 32, 3581-3592.
Vicini, L.; Souza, A.M. (2005). Análise multivariada da teoria à prática. Senior design project. Santa Maria: Universidade Federal de Santa Maria, CCNE, Manual.
Wang, X.; Cai, Q.; Ye, L.; Qu, X. (2012). Evaluation of spatial and temporal variation in stream water quality by multivariate statistical techniques: A case study of the Xiangxi River basin, China. Quaternary International. 282, 137-144.
Downloads
Published
How to Cite
Issue
Section
License
To access the DECLARATION AND TRANSFER OF COPYRIGHT AUTHOR’S DECLARATION AND COPYRIGHT LICENSE click here.
Ethical Guidelines for Journal Publication
The Ciência e Natura journal is committed to ensuring ethics in publication and quality of articles.
Conformance to standards of ethical behavior is therefore expected of all parties involved: Authors, Editors, Reviewers, and the Publisher.
In particular,
Authors: Authors should present an objective discussion of the significance of research work as well as sufficient detail and references to permit others to replicate the experiments. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. Review Articles should also be objective, comprehensive, and accurate accounts of the state of the art. The Authors should ensure that their work is entirely original works, and if the work and/or words of others have been used, this has been appropriately acknowledged. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. Authors should not submit articles describing essentially the same research to more than one journal. The corresponding Author should ensure that there is a full consensus of all Co-authors in approving the final version of the paper and its submission for publication.
Editors: Editors should evaluate manuscripts exclusively on the basis of their academic merit. An Editor must not use unpublished information in the editor's own research without the express written consent of the Author. Editors should take reasonable responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper.
Reviewers: Any manuscripts received for review must be treated as confidential documents. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should be conducted objectively, and observations should be formulated clearly with supporting arguments, so that Authors can use them for improving the paper. Any selected Reviewer who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the Editor and excuse himself from the review process. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.