ASSESSMENT OF CLIMATOLOGY FROM AMAZON REGION IN HIGEM FAMILY MODELS

Authors

  • Maria de Souza Custodio Universidade de São Paulo
  • Rosmeri Porfirio da Rocha Universidade de São Paulo
  • Tercio Ambrizzi Universidade de São Paulo
  • Pier Luigi Vidale

DOI:

https://doi.org/10.5902/2179460X18005

Keywords:

Amazon. Climatology. Climatic models. Precipitation. Temperature.

Abstract

This study analyzed the high resolution coupled and atmospheric global models of HiGEM/UJCC project (version 1.2) with different horizontal resolutions over Amazon region (South America). The purpose of this study was to understand the impact of the horizontal resolution of coupled models in simulating atmospheric patterns and processes of interaction between spatial scales over Amazon region. Therefore, we used simulations from HadGEM, HiGEM (coupled), HadGAM, HiGEM (uncoupled), and also observed data from different reanalyzes, with different spatial horizontal resolution (CMAP, CRU, GPCP, NCEP, CPC, ERA-Interim). The precipitation and temperature seasonal patterns and annual cycles were compared with observed data, and some measures of dispersion for the annual cycles were analyzed. To study the annual cycle we considered two subdomains in this region: AMN (North Amazon) and AMN (Amazon). The results indicated that the grid refinement and ocean-atmosphere coupling contributes to a better representation of seasonal patterns, both precipitation and temperature, on the Amazon region. Besides, the climatic models analyzed represent better than other models (regional and global) the climatic characteristics of this region. This indicates a breakthrough in the development of high resolution climate models.

Downloads

Download data is not yet available.

References

Baker, I. T., L. Prihodko, A. S. Denning, M. Goulden, S. Miller, and H. R. da Rocha (2008), Seasonal drought stress in the Amazon: Reconciling models and observations, J. Geophys. Res.,v.113, G00B01, doi:10.1029/2007JG000644.

Brankovic, C., Molteni, F. (1997). Sensitivity of the ECMWF model northern winter climate to model formulation. Climate Dynamics, 13, 75-101, DOI: 10.1007/s003820050154.

Cavalcanti, I. F. A., Marengo, J. A., Satyamurty, P., Nobre, C. A., Trosnikov, I., Bonatti, J. P., Manzi, A. O., Tarasova, T., Pezzi, L. P., D'Almeida, C., Sampaio, G., Castro, C. C., Sanches, M.S., Camargo, H. (2002). Global Climatological Features in a Simulation Using the CPTEC–COLA AGCM. J. Climate, v.15, 2965–2988.

Chen, M., Shi, W., Xiel, P., Silva, V. B. S., Kousky, Y. V. E., Higgins, R. W., Janowik, J. E. (2008). Assessing objective techniques for gauge-based analyses of global daily precipitation. Journal of Geophysical Research, 113, D04110, doi:10.1029/2007JD009132.

Dee, D. P., com 35 co-autores (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. R. Meteorol. Soc., 137, 553-597 (DOI: 10.1002/qj.828).

Hastenrath, S. (1997) Annual Cycle of Circulation and Convective Activity over the Tropical Americas. Journal of Geophysical Research - Atmosphere, 102, 4267-4274.

Hurrel, J. W., Hack, J. J., Boville, B.A., Willianson, D.L., Kiehl, J. T. (1998). The dynamical simulation of the NCAR Community Climate Model Version 3 (CCM3). J. Climate, 11, 1207–1236.

IPCC (2007). Climate change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, HOUGHTON, JT, (Ed,), Cambridge University Press.

Johns, T. C., e Co-autores (2006). The New Hadley Centre Climate Model (HadGEM1): Evaluation of coupled simulations. J. Climate, 19, 1327–1353.

Kalnay, E., e co-autores (1996). The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437–471.

Mclaren, A. J., e Co-autores (2006). Evaluation of the sea ice simulation in a new coupled atmosphere-ocean climate model (HadGEM1). J. Geophys. Res., 111, C12014, doi:10.1029/2005JC003033.

Martin, G. M., Ringer, M. A., Pope, V. D., Jones, A., Dearden, C., Hinton, T. J. (2006). The physical properties of the atmosphere in the new Hadley Centre Global Environmental Model (HadGEM1). Part I: Model description and global climatology. J. Climate, 19, 1274–1301.

Mitchell, T. D.; Jones, P.D. (2005). An improved method of constructing a database of monthly climate observations and associated highresolution grids, Int. J. Climatol., 25, 693–712, doi:10.1002/joc.1181.

Molion, L.C.B. (1985). Micrometeorology of an Amazonian rain forest. In: Dickinson, R.E. ed. The Geophysiology of Amazonia: Vegetation and climate interactions. Chichester, UK: John Wiley & Sons, p. 255-269.

Moura, A.D., Hastenrath, S. (2004). Climate prediction for Brazils Nordeste: Performance of empirical and numerical modeling methods. Journal of Climate, v.17, n.13, p.2667-2672.

Neto, A. C. A., Satyamurty, P., Correia, F. W. (2015). Some observed characteristics of frontal systems in the Amazon Basin. Meteorological Applications, n/a-n/a. Online publication date: 1-Apr-2015.

Nobre, P., Moura, A. D., Sun, L. (2001). Dynamical downscaling of seasonal climate prediction over Nordeste Brazil with WCHM3 and NCEP’s regional spectral models at IRI. Bull. Amer. Meteor. Soc., n.82, p.2787-2796.

Quartly, G. D., Kyte, E. A, Srokosk, M. A., Tsimplis M. N. (2007) An intercomparison of global oceanic precipitation climatologies. J. Geophys. Reser., 112, D10121.

Ringer, M. A., e Coautores (2006). The physical properties of the atmosphere in the new Hadley Centre Global Environmental Model (HadGEM1). Part II: Aspects of variability and regional climate. J. Climate, 19, 1302–1326, 2006.

Roberts, M. J., Clayton, A., Demory, M.-E., Donners, J., Vidale, P. L., Norton, W., Shaffrey, L. C., Stevens, D. P., Stevens, I., Wood, R. A. and Slingo, A. (2009) Impact of Resolution on the Tropical Pacific Circulation in a Matrix of Coupled Models. Journal of Climate, 22 (10). pp. 2541-2556. ISSN 1520-0442 doi: 10.1175/2008JCLI2537.1

Sá, L. D. A., Manzi, A. O., Viswanadam, Y. (1996). Partição de fluxos de calor sensível e de calor latente acima da floresta amazônica de terra firme. São José dos Campos, INPE, Julho 1986. (INPE-3972-PRE/970).

Seth, A., Rojas, M., Rauscher, S. A. (2010) CMIP3 projected changes in the annual cycle of the South American Monsoon. Climatic Change, 98:3-4, 331.

Shaffrey, L. C., Stevens, I., Norton, W., Roberts, M. J., Vidale, P. L., Harle, J. D., Jrrar, A., Stevens, D. P., Woodage, M. J., Demory, M.-E., Donners, J., Clark, D. B., Clayton, A., Cole, J. W., Wilson, S. S., Connolley, W. M., Davies, T. M., Iwi, A. M., Johns, T. C., King, J. C., New, A. L., Slingo, J. M., Slingo, A., Steenman-Clark, L. and Martin, G. M. (2009) U.K. HiGEM: The New U.K. High-Resolution Global Environment Model—Model Description and Basic Evaluation. Journal of Climate, 22 (8). pp. 1861-1896. ISSN 1520-0442 doi: 10.1175/2008JCLI2508.1

Tanaka, L. M. d. S, Satyamurty, P., Machado, L. A. T. (2014) Diurnal variation of precipitation in central Amazon Basin. International Journal of Climatology, v.34, Issue 13, p.3481–3640, DOI: 10.1002/joc.3929.

Xie, P., Arkin, P. (1996). Analysis of global monthly precipitation using gauge observation, satellite estimates and numerical model predictions. J Clim 9:840–858.

Published

2016-05-31

How to Cite

Custodio, M. de S., Rocha, R. P. da, Ambrizzi, T., & Vidale, P. L. (2016). ASSESSMENT OF CLIMATOLOGY FROM AMAZON REGION IN HIGEM FAMILY MODELS. Ciência E Natura, 38(2), 1054–1063. https://doi.org/10.5902/2179460X18005

Issue

Section

Meteorology

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.