Variational calculus and applications

Authors

DOI:

https://doi.org/10.5902/2179460X40596

Keywords:

Calculus of variations, Functionals, Lagrangian, Optimization

Abstract

This paper consists of a brief review and introduction to the main concepts of Classic Variational Calculus. Starting from the
definitions of the concepts of first and second variation of a functional, we present a mathematically rigorous treatment for the
Variational Calculus, establishing necessary and sufficient conditions for obtaining extrema. In this context, the notion of conjugate
points is introduced, which is fundamental for the classification of weak extrema. Some simple and enlightening examples are dealt
with throughout the paper. Strong extrema are characterized and sufficient conditions for their occurrence are given. The paper
concludes with a brief application to Lagrange mechanics, showing the existence of actions whose stationary points are saddle
points instead of minima.

Downloads

Download data is not yet available.

Author Biographies

Jardel Carpes Meurer, Universidade Federal de Santa Maria, Santa Maria, RS

Coordenadoria Acadêmica - Universidade Federal de Santa Maria

Lucas Tavares Cardoso, Universidade Federal de Santa Maria, Santa Maria, RS

Coordenadoria Acadêmica - Universidade Federal de Santa Maria

Glauber Rodrigues de Quadros, Universidade Federal de Santa Maria, Santa Maria, RS

Coordenadoria Acadêmica - Universidade Federal de Santa Maria

References

Antunes, C. A., Galhardi, V. B., Hernaski, C. A. (2018). As leis de Newton e a estrutura espaço-temporal da mecânica clássica.

Revista Brasileira de Ensino de Física, 40, URL http://www.scielo.br/scielo.php?script=sci_arttext&

pid=S1806-11172018000300411&nrm=iso.

Freire, W. H. C. (2012). A derivada funcional de segunda ordem da ação: investigando minimalidade, maximalidade e “ponto”

sela. Revista Brasileira de Ensino de Física.

Gelfand, I. M., Fomin, S. V. (2000). Calculus of Variations. Prentice-Hall.

Gray, C., Taylor, E. (2007). When action is not least. American Journal Of Physics, 75(5), 434–458.

Sousa Júnior, J. R. A. d. (2010). O cálculo variacional e o problema da braquistócrona. Universidade Estadual Paulista (UNESP).

Thornton, S. T., Marion, J. B. (2011). Dinâmica Clássica de Partículas e Sistemas. Cengage Learning.

Published

2020-02-07

How to Cite

Meurer, J. C., Cardoso, L. T., & Quadros, G. R. de. (2020). Variational calculus and applications. Ciência E Natura, 42, e50. https://doi.org/10.5902/2179460X40596

Most read articles by the same author(s)

<< < 1 2