Análise das Pressuposições e Adequação dos Resíduos em Modelo de Regressão Linear para Individuais, Ponderados e não Ponderados, utilizando Procedimentos do SAS®

Authors

  • Janete Pereira Amador UFSM
  • Sidinei José Lopes UFSM
  • João Eduardo da Silva Pereira UFSM
  • Adriano Mendonça Souza UFSM
  • Marcos Toebe UFSM

DOI:

https://doi.org/10.5902/2179460X9359

Abstract

It is appropriate to use regression analysis establish relations that allowto predict tone or more variables in terms of others. When there arerepeated measurements for independent variable X for differentmeasurements for dependent variable Y, the regression model may beadjusted in three different ways: using individual values of X and Y(considering all data); with means of Y for levels of X (treatments) and,using weighted means of Y by the number of repetitions of each level ofX (treatment). The objective of this study is to adjust a linear regressionmodel by individual values with weighted and not weighted means ofthe treatments in order to test the presuppositions for the adequacy ofthe model and to analyze the variance decomposing the sum of squaresof error in its components, thus evaluating the Lack of Fit. Theadjustments of the models and its presuppositions were done in SAS.Thus, it was observed that the adjusted models for individual data andweighted means present the same coefficients. The test for Lack of Fit isonly possible with individual data. The choice of best strategy to analyzethe data should be decided by the researcher but it is suggested that,when all data of the research are accessible, the best strategy would beto estimate the model using individualized data since it presents moreprecise information regarding the variability of the data set which doesnot happen when working with means of variables.

Downloads

Download data is not yet available.

Author Biographies

Janete Pereira Amador, UFSM

Departamento de Estatística, Experimentação

Sidinei José Lopes, UFSM

Departamento de Fitotecnia Experimentasão

João Eduardo da Silva Pereira, UFSM

Departamento de Estatística Experimentação

Adriano Mendonça Souza, UFSM

Departamento de Estatística Análise Multivariada

Marcos Toebe, UFSM

Mestrando Agronomia Experimentasão

Published

2011-12-17

How to Cite

Amador, J. P., Lopes, S. J., Pereira, J. E. da S., Souza, A. M., & Toebe, M. (2011). Análise das Pressuposições e Adequação dos Resíduos em Modelo de Regressão Linear para Individuais, Ponderados e não Ponderados, utilizando Procedimentos do SAS®. Ciência E Natura, 33(2), 07–22. https://doi.org/10.5902/2179460X9359

Issue

Section

Statistics

Most read articles by the same author(s)

1 2 3 > >>