Use of remote sensing via satellite in the identification of tornado damage paths in a severe weather event in Rio Grande do Sul

Authors

DOI:

https://doi.org/10.5902/2179460X55309

Keywords:

Tornadoes, Damage tracks, Remote sensing

Abstract

The number of tornado reports in Brazil has increased in recent years; nevertheless, it is likely that many occurrences over uninhabited areas and/or during night time hours remain unconfirmed, especially in a country devoid of official surveys of damage caused by intense winds. This work follows previous initiatives addressing the employment of remote sensing via satellite to identify damage paths associated with tornadoes. The nocturnal event analyzed in this study took place in north-northeast Rio Grande do Sul state from the night hours of 7 June 2017 into early morning hours of the following day, and represents an example of the characterization of significant damage caused by tornadoes despite the lack of visual confirmation of the phenomenon. Images produced by low-orbit environmental satellites of the Landsat and Sentinel series are analyzed, as well as imagery made available by the commercial-purpose environmental satellites that comprise the data base of Google Earth software. To aid in the identification of damage inflicted to dense vegetation, the web tools Global Florest Change and Global Florest Watch, which employ objective methods to detect abrupt modifications in the vegetation cover, are also utilized. Based on these products, it was possible to identify seven tornado damage tracks for the nocturnal event of June 2017, ratifying the value added by remote sensing products in the confirmation of tornadic episodes.

Downloads

Download data is not yet available.

Author Biographies

Murilo Machado Lopes, Universidade Federal de Santa Maria, Santa Maria, RS

Bacharel em Meteorologia pela Universidade Federal de Santa Maria (2017) e Mestre em Meteorologia através do Programa de Pós-Graduação em Meteorologia da Universidade Federal de Santa Maria (2020). Atualmente é doutorando em Meteorologia no Programa de Pós-Graduação em Meteorologia da Universidade Federal de Santa Maria.

Ernani de Lima Nascimento, Universidade Federal de Santa Maria, Santa Maria, RS

Professor Associado dos Programas de Graduação e Pós-Graduação em Meteorologia da Universidade Federal de Santa Maria (UFSM). É graduado em Meteorologia pela Universidade Federal do Rio de Janeiro (UFRJ), com Especialização em Previsão do Tempo e Clima também pela UFRJ, Mestrado em Meteorologia pela Universidade de São Paulo, e Doutorado em Meteorologia pela University of Oklahoma (EUA). Desenvolveu atividades de Pós-Doutorado junto à Divisão de Previsão de Tempo Imediata do Météo-France (Toulouse/França) entre abril de 2007 e setembro de 2008, e junto ao Centro di Eccellenza di Telerilevamento e Modellistica Numerica per la Previsione di Eventi Severi (L´Aquila-Roma/Itália) entre abril 2013 e março 2014. Sua área de atuação acadêmico-científica é em Ciências Atmosféricas, com ênfase em Meteorologia de Mesoescala, abordando principalmente os tópicos: (i) dinâmica da convecção; (ii) tempestades convectivas locais, vendavais e tornados; (iii) sistemas de observação meteorológica em mesoescala; (iv) sistemas sinóticos subtropicais; (v) circulações atmosféricas locais. É orientador de Mestrado e Doutorado, já tendo concluído a orientação de sete Mestres e de dois Doutores em Meteorologia.

References

Atkins, N. T., Butler, K. M., Flynn, K. R., Wakimoto, R. M. (2014). An integrated damage, visual, and radar analysis of the 2013 moore, oklahoma, ef5 tornado. Bulletin of the American Meteorological Society, 95 (10), 1549–1561.

Baumann, M., Ozdogan, M., Wolter, P. T., Krylov, A., Vladimirova, N., Radeloff, V. C. (2014). Landsat remote sensing of forest windfall disturbance. Remote sensing of environment, 143, 171–179.

Bentley, M. L., Mote, T. L., Thebpanya, P. (2002). Using landsat to identify thunderstorm damage in agricultural regions. Bulletin of the American Meteorological Society, 83 (3), 363–376.

Curtis, A., Mills, J. W. (2012). Spatial video data collection in a post-disaster landscape: The tuscaloosa tornado of april 27th 2011. Applied Geography, 32 (2), 393–400.

Dyer, R. C. (1988). Remote sensing identification of tornado tracks in argentina, brazil, and paraguay. Photogram Eng Remote Sens, 54 (10), 1429–1435.

Edwards, R., LaDue, J. G., Ferree, J. T., Scharfenberg, K., Maier, C., Coulbourne, W. L. (2013). Tornado intensity estimation: Past, present, and future. Bulletin of the American Meteorological Society, 94 (5), 641–653.

Fujita, T. T. (1981). Tornadoes and downbursts in the context of generalized planetary scales. Journal of the Atmospheric Sciences, 38 (8), 1511–1534.

G1 RS (2017). Chuva no rs deixa 73 cidades em situação de emergência e tira mais de 102 mil pessoas de casa. brasil. URL https://g1.globo.com/rs/rio-grande-do-sul/noticia/.

chuva-no-rs-deixa-73-cidades-em-situacao-de-emergencia-e-tira-mais-de-102-mil-pessoas-de- ghtml, acessado em 12 ago 2017.

Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S., Goetz, S. J., Loveland, T. R., et al. (2013). High-resolution global maps of 21st-century forest cover change. science, 342 (6160), 850–853.

Hansen, M. C., Krylov, A., Tyukavina, A., Potapov, P. V., Turubanova, S., Zutta, B., Ifo, S., Margono, B., Stolle, F., Moore, R. (2016). Humid tropical forest disturbance alerts using landsat data. Environmental Research Letters, 11(3), 034, 008.

Jedlovec, G. J., Nair, U., Haines, S. L. (2006). Detection of storm damage tracks with eos data. Weather and Forecasting, 21 (3), 249–267.

Lopes, M. M., Ferreira, V., Kannenberg, C., Feldhaus, P. F., Azevedo, R. N., de Oliveira, M. I., Bremm, T., Nascimento, E. L., Anabor, V., Quadro, M. F., et al. (2018). Damage assessment and analysis of storm evolution associated with a significant episode of cold-season tornadic activity in southern brazil. Em: 29th Conference on Severe Local Storms, AMS, URL https://ams.confex.com/ams/29SLS/webprogram/Paper348707.html.

Marcelino, I., Marcelino, E., Sausen, T. (2007). Tornado ocorrido em muitos capões no dia 29/08/2005. Relatório Técnico Santa Maria-RS: Instituto Nacional de Pesquisas Espaciais.

McDonald, J. R., Mehta, K. C. (2006). A recommendation for an Enhanced Fujita scale (EF-Scale). Wind Science and Engineering Center, Texas Tech University.

Nascimento, E., Anabor, V. (2015). Avaliação da intensidade do tornado ocorrido na cidade de xanxerê no dia 20 de abril de 2015.

Parecer Técnico Santa Maria-RS: Universidade Federal de Santa Maria.

Nascimento, E. L., Doswell III, C. (2006). The need for an improved documentation of severe thunderstorms and tornadoes in south america. Em: Proc. Severe Local Storms Special Symposium, 86th AMS Annual Meeting, Amer. Meteor. Soc., Atlanta, USA, URL http://ams.confex.com/ams/pdfpapers/102247.pdf.

Negrón-Juárez, R. I., Chambers, J. Q., Guimaraes, G., Zeng, H., Raupp, C. F., Marra, D. M., Ribeiro, G. H., Saatchi, S. S., Nelson,

B. W., Higuchi, N. (2010). Widespread amazon forest tree mortality from a single cross-basin squall line event. Geophysical Research Letters, 37 (16).

Negrón-Juárez, R. I., Jenkins, H. S., Raupp, C. F., Riley, W. J., Kueppers, L. M., Magnabosco Marra, D., Ribeiro, G. H., Monteiro,

M. T. F., Candido, L. A., Chambers, J. Q., et al. (2017). Windthrow variability in central amazonia. Atmosphere, 8 (2), 28.

Negrón-Juárez, R. I., Holm, J. A., Marra, D. M., Rifai, S. W., Riley, W. J., Chambers, J. Q., Koven, C. D., Knox, R. G., McGroddy,

M. E., Di Vittorio, A. V., et al. (2018). Vulnerability of amazon forests to storm-driven tree mortality. Environmental Research Letters, 13 (5), 054, 021.

Parker, M. D., Ratcliffe, I. C., Henebry, G. M. (2005). The july 2003 dakota hailswaths: Creation, characteristics, and possible impacts. Monthly weather review, 133 (5), 1241–1260.

Segele, Z. T., Stensrud, D. J., Ratcliffe, I. C., Henebry, G. M. (2005). Influence of a hailstreak on boundary layer evolution.

Monthly weather review, 133 (4), 942–960.

Shikhov, A., Chernokulsky, A. (2018). A satellite-derived climatology of unreported tornadoes in forested regions of northeast europe. Remote Sensing of Environment, 204, 553–567.

Silva Dias, M. A. (2011). An increase in the number of tornado reports in brazil. Weather, Climate, and Society, 3 (3), 209–217.

Vallis, M. B., Loredo-Souza, A. M., Ferreira, V., de Lima Nascimento, E. (2019). Classification and identification of synoptic and non-synoptic extreme wind events from surface observations in south america. Journal of Wind Engineering and Industrial Aerodynamics, 193, 103, 963.

Van Den Broeke, M. S., Van Den Broeke, C. A. (2015). Polarimetric radar observations from a waterspout-producing thunderstorm.

Weather and Forecasting, 30 (2), 329–348.

Wakimoto, R. M., Wienhoff, Z., Bluestein, H. B., Reif, D. (2018). The dodge city tornadoes on 24 may 2016: Damage survey, photogrammetric analysis combined with mobile polarimetric radar data. Monthly Weather Review, 146 (11), 3735–3771.

Yuan, M., Dickens-Micozzi, M., Magsig, M. A. (2002). Analysis of tornado damage tracks from the 3 may tornado outbreak using multispectral satellite imagery. Weather and forecasting, 17 (3), 382–398.

Published

2020-09-25

How to Cite

Lopes, M. M., & Nascimento, E. de L. (2020). Use of remote sensing via satellite in the identification of tornado damage paths in a severe weather event in Rio Grande do Sul. Ciência E Natura, 42, e8. https://doi.org/10.5902/2179460X55309

Issue

Section

Short and Very Short Term Forecast

Most read articles by the same author(s)