Evaluation of surface fluxes using the WRF model – a case study to the Bananal wetlands’ region





Amazonian Forest, Turbulent surface heat flux, Wetlands


The present work aimed to analyze the simulations of surface fluxes of sensible and latent heat, and global radiation using the mesoscale atmospheric model (WRF) for the Bananal Island (Tocantins state, Brazil) region during three distinct seasonal periods (flooded, dry, and wet) in 2004. The final analysis of the NCEP global model was used as initial and boundary conditions of the WRF, which horizontal resolution (5 km) and physical parameterizations follow the operational settings used at CPTEC/INPE. The global radiation, the simulated sensible and latent heat fluxes were consistent with the observed data for the daily cycle, where the R2 was higher than 0.8, showing a good correlation between the data. However, the WRF outputs overestimates/underestimates follow a distinct seasonal pattern between global radiation and heat fluxes. There are some hypotheses for this result, such as potential limitations of the model in describing the surface conditions, whether static or dynamic. Future studies may investigate how sensitive the WRF would be when updating surface conditions for scenarios closer to reality, especially the flooded surface situation.


Download data is not yet available.

Author Biographies

Rayonil Gomes Carneiro, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, SP

Pesquisador, especialista em estudos micrometeorológicos e interações solo-planta-atmosfera, com foco em estudos observacionais e de modelagem nos biomas florestais

Diogo Nunes da Silva Ramos, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, SP

Pesquisador, especialista em Micrometeorologia Aplicada a energias renováveis e a modelos de previsão numérica de tempo

Letícia d’Agosto Miguel Fonseca, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, SP

Doutoranda em Ciência do Sistema Terrestre, com foco em estudos dos impactos das secas na Amazônia, por meio de análises de dados de sensoriamento remoto. Email: leticiafonseca

Camilla Kassar Borges, Universidade Federal de Campina Grande, Campina Grande, PB

Pesquisadora, especialista nas trocas turbulentas entre biosfera-atmosfera através da técnica de eddy covariance no semiárido brasileiro

Cleber Assis dos Santos, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, SP

Doutorando em Ciência do Sistema Terrestre, atuando na variabilidade espacial e temporal da razão isotópica da precipitação

Gilberto Fisch, Universidade de Taubaté, Taubaté, SP

Universidade de Taubaté, Professor Titular de Agrometeorologia, especialista em interações solo-planta-atmosfera, com foco em estudos observacionais e de modelagem na Amazônia

Laura De Simone Borma, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, SP

Pesquisadora Titular, especialista em interação solo-planta-atmosfera, ecohidrologia e serviços ecossistêmicos de regulação hídrica e climática, nos diversos biomas brasileiros


BEZIAT, P.; CESCHIA, E.; DEDIEU, G. Carbon balance of a three crop succession over two cropland sites in South West France. Agricultural and Forest Meteorology, v. 149, p. 1628–1645, https://doi.org/10.1016/j.agrformet.2009.05.004, 2009.

BI, X.; GAO, Z.; DENG, X.; WU, D.; LIANG, J.; ZHANG, H.; SPARROW, M.; DU, J.; LI, F.; TAN, H. Seasonal and diurnal variations in moisture, heat, and CO2 fluxes over grassland in the tropical monsoon region of southern China. Journal of Geophysical Research Atmospheres, v. 112, p. 1–14, https://doi.org/10.1029/2006JD007889, 2007.

BORMA, L. S.; ROCHA, H. R. D.; CABRAL, O. M.; RANDOW, C. V.; COLLICCHIO, E.; KURZATKOWSKI, D.; BRUGGER, P.; FREITAS, H.; TANNUS, R.; OLIVEIRA, L.; RENNÓ, C. D.; ARTAXO, P. Atmosphere and hydrological controls of the evapotranspiration over a floodplain forest in the Bananal Island region, Amazonia. Remote Sensing, v. 114, p. 1–12, https://doi.org/10.1029/2007JG000641, 2009.

DIAZ, M.; ROBERTI, D. R. Cálculo das trocas de carbono num agroecossistema de arroz com aplicação de técnicas de preenchimento de falhas. Ciência e Natura, v. 36, p. 27–31, https://doi.org/10.5902/2179460X16211, 2014.

FONSECA, L. D. M.; DALAGNOL, R.; MALHI, Y.; RIFAI, S. W.; COSTA, G. B.; SILVA, T. S. F.; ROCHA, H. R. D.; TAVARES, I. B.; BORMA, L. S. Phenology and Seasonal Ecosystem Productivity in na Amazonian Floodplain Forest. Remote Sensing, v. 11, p. 1–17, https://doi.org/10.3390/rs11131530, 2019.

HARIPRASAD, K.; SRINIVAS, C. V.; NAIDU, C. V.; BASKARAN, R.; VENKATRAMAN, B. Assessment of surface layer parameterizations in ARW using micro-meteorological observations from a tropical station. Meteorological Applications, v. 23, p. 191–208, https://doi.org/10.1002/met.1545, 2016.

JUNK, W. J.; PIEDADE, M. T. F.; CUNHA, C. N. da; WITTMANN, F.; SCHÖNGART, J. Macrohabitat studies in large Brazilian floodplains to support sustainable development in the face of climate change. Ecohydrology and Hydrobiology, v. 18, p. 334–344, https://doi.org/10.1016/j.ecohyd.2018.11.007, 2018.

JUNK, W. J.; PIEDADE, M. T. F.; LOURIVAL, R.; WITTMANN, F.; KANDUS, P.; LACERDA, L. D.; BOZELLI, R. L.; ESTEVES, F. A.; CUNHA, C. Nunes da; MALTCHIK, L.; SCHöNGART, J.; SCHAEFFERNOVELLI, Y.; AGOSTINHO, A. A. Brazilian wetlands: their definition, delineation, and classification for research, sustainable management, and protection. Aquatic Conservation: Marine and Freshwater Ecosystems, v. 24, p. 5–22, https://doi.org/10.1002/aqc.2386, 2013.

LIN, P.; YANG, Z.-L.; GOCHIS, D. J.; YU, W.; MAIDMENT, D. R.; SOMOS-VALENZUELA, M. A.; DAVID, C. H. Implementation of a vector-based river network routing scheme in the community WRF-HYDRO modeling framework for flood discharge simulation. Environmental Modelling and Software, v. 107, p. 1–11, https://doi.org/10.1016/j.envsoft.2018.05.018, 2018.

PAROLIN, P.; LUCAS, C.; PIEDADE, M. T. F.; WITTMANN, F. Flood-tolerant trees of Amazonian floodplains. Revista Pesquisas Botânica, v. 61, p. 7–38, 2010.

SMALLMAN, T. L.; MONCRIEFF, J. B.; WILLIAMS, M. WRFv3.2-SPAv2: development and validation of a coupled ecosystem–atmosphere model, scaling from surface fluxes of CO2 and energy to atmospheric profiles. Geoscientific Model Development, v. 6, p. 1079–1093, https://doi.org/10.5194/gmd-6-1079-2013, 2013.

SUN, X.; HOLMES, H. A.; OSIBANJO, O. O.; SUN, Y.; IVEY, C. E. Evaluation of Surface Fluxes in the WRF Model: Case Study for Farmland in Rolling Terrain. Atmosphere, v. 8, p. 1–23, https://doi.org/10.3390/atmos8100197, 2017.

WANG, W.; BRUYÈRE, C.; DUDA, M.; DUDHIA, J.; GILL, D.; KAVULICH, M.; KEENE, K.; LIN, H.-C.; MICHALAKES, J.; RIZVI, S.; ZHANG, X.; BERNER, J.; FOSSELL, K. WRF ARW Version 3 Modeling System User’s Guide. Boulder, Colorado (EUA), 2016. 408 p.

WEHBE, Y.; TEMIMI, M.; WESTON, M.; CHAOUCH, N.; BRANCH, O.; SCHWITALLA, T.; WULFMEYER, V.; ZHAN, X.; LIU, J.; MANDOUS, A. A. Analysis of an extreme weather event in a hyper-arid region using WRF-Hydro coupling, station, and satellite data. Natural Hazards and Earth System Sciences, v. 19, p. 1129–1149, https://doi.org/10.5194/nhess-19-1129-2019, 2019.




How to Cite

Carneiro, R. G., Ramos, D. N. da S., Fonseca, L. d’Agosto M., Borges, C. K., Santos, C. A. dos, Fisch, G., & Borma, L. D. S. (2020). Evaluation of surface fluxes using the WRF model – a case study to the Bananal wetlands’ region. Ciência E Natura, 42, e17. https://doi.org/10.5902/2179460X45709

Most read articles by the same author(s)

1 2 3 4 > >>