Evaluation of turbulence parameters in methane fluxes for an irrigated rice paddy

Authors

DOI:

https://doi.org/10.5902/2179460X45265

Keywords:

Eddy Covariance, Methane, Turbulence

Abstract

Methane (CH4) is one of the main greenhouse gases. An important source of CH4 emission is flooded rice paddy. In this paper, the Eddy Covariance methodology was used to estimate the surface fluxes of CH4 in a flooded rice paddy in the Southern Brazil (lat: -30.2771 N; long: -53.1479 W; altitude - 40.5 m). In the event of low turbulence, this method can generate unrealistic flux data. In this situation, it is recommended remove the flux of the dataset. In general, the friction velocity (u*) is used to remove CH4 flux in low turbulence situations. However, u* is a flux and the use of the standard deviation of vertical velocity fluctuations (σw) can be an alternative. The objective of this work is to analyze the behavior of CH4 flux with friction velocity (u*), with the standard deviation of vertical velocity fluctuations (σw), and with atmospheric and soil variables in a flooded rice paddy.

Downloads

Download data is not yet available.

Author Biographies

Cristiano Maboni, Universidade Federal de Santa Maria, Santa Maria, RS

Licenciado e Mestre em Física, Universidade Federal de Santa Maria, PPGFis

Débora Regina Roberti, Universidade Federal de Santa Maria, Santa Maria, RS

Doutora em Física, Universidade Federal de Santa Maria

Tiago Bremm, Universidade Federal de Santa Maria, Santa Maria, RS

Licenciado e Mestre em Física, Universidade Federal de Santa Maria, PPGFis

Lucas Augusto Fagundes, Universidade Federal de Santa Maria, Santa Maria, RS

Graduado e Mestre em Meteorologia pela Universidade Federal de Santa Maria, PPGMet

Gustavo Pujol Veck, Universidade Federal de Santa Maria, Santa Maria, RS

Licenciado e Mestre em Física, Universidade Federal de Santa Maria, PPGFis

Michel Stefanello, Universidade Federal de Santa Maria, Santa Maria, RS

Possui graduação e mestrado em Física pela Universidade Federal de Santa Maria

References

ACEVEDO O C, MORAES O L, DEGRAZIA G A, FITZJARRALD D R, MANZI A O, CAMPOS J G. Is friction velocity the most appropriate scale for correcting nocturnal carbon dioxide fluxes? Agricultural and forest meteorology, Elsevier, v. 149, n. 1, p. 1–10, 2009.

ALBERTO M C R, WASSMANN R, BURESH R J, QUILTY J R, JR T Q C, SANDRO J M, CENTENO C A R. Measuring methane flux from irrigated rice fields by eddy covariance method using open-path gas analyzer. Field Crops Research, Elsevier, v. 160, p. 12–21, 2014.

AmeriFlux. Year of Methane at the AmeriFlux 2019 Annual Meeting. 2019. Disponível em: http://https://ameriflux.lbl.gov/year-of-methane-at-the-ameriflux-2019-annual-meeting/.

AUBINET, M. Eddy covariance co2 flux measurements in nocturnal conditions: an analysis of the problem. Ecological Applications, Wiley Online Library, v. 18, n. 6, p. 1368–1378, 2008.

BALDOCCHI D, DETTO M, SONNENTAG O, VERFAILLIE J, TEH Y A, SILVER W, KELLY N M. The challenges of measuring methane fluxes and concentrations over a peatland pasture. Agricultural and forest meteorology, Elsevier, v. 153, p. 177–187, 2012.

DIAZ M B, ROBERTI D R, CARNEIRO J V, SOUZA V. de A, MORAES O L L de. Dynamics of the superficial fluxes over a flooded rice paddy in southern brazil. Agricultural and ForestMeteorology, Elsevier, v. 276, p. 107650, 2019.

GASH J, CULF A. Applying a linear detrend to eddy correlation data in realtime. Boundary-Layer Meteorology, Springer, v. 79, n. 3, p. 301–306, 1996.

MAHRT, L. Stably stratified atmospheric boundary layers. Annual Review of Fluid Mechanics, Annual Reviews, v. 46, p. 23–45, 2014.

MAUDER M, CUNTZ M, DRÜE C, GRAF A, REBMANN C, SCHMID H P, SCHMIDT M, STEINBRECHER R. A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements. Agricultural and Forest Meteorology, Elsevier, v. 169, p. 122–135, 2013.

MONCRIEFF J B, CLEMENT R, FINNIGAN J, MEYERS T. Averaging, detrending, and filtering of eddy covariance time series. In: Handbook of micrometeorology. [S.l.]: Springer, 2004. p. 7–31.

MONCRIEFF J B, MASSHEDER J, BRUIN H D, ELBERS J, FRIBORG T, HEUSINKVELD B, KABAT P, SCOTT S, SOGAARD H, VERHOEF A. A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. Journal of Hydrology, Elsevier, v. 188, p. 589–611, 1997.

RUNKLE B R, SUVOCAREV K, REBA M L, REAVIS C W, SMITH S F, CHIU Y-L, FONG B. Methane emission reductions from the alternate wetting and drying of rice fields detected using the eddy covariance method. Environmental science & technology, ACS Publications, v. 53, n. 2, p. 671–681, 2018.

SOUZA V d A, ROBERTI D R, RUHOFF A L, ZIMMER T, ADAMATTI D S, GONÇALVES L G G d, DIAZ M B, ALVES R d C M, MORAES O L. de. Evaluation of mod16 algorithm over irrigated rice paddy using flux tower measurements in southern brazil. Water, Multidisciplinary Digital Publishing Institute, v. 11, n. 9, p. 1911, 2019.

VERCAUTEREN N, KLEIN R. A clustering method to characterize intermittent bursts of turbulence and interaction with submesomotions in the stable boundary layer. Journal of the atmospheric sciences, v. 72, n. 4, p. 1504–1517, 2015.

VICKERS D, MAHRT L. Quality control and flux sampling problems for tower and aircraft data. Journal of atmospheric and oceanic technology, v. 14, n. 3, p. 512–526, 1997.

VICKERS D, MAHRT L. The cospectral gap and turbulent flux calculations. Journal of Atmospheric and Oceanic technology, v. 20, n. 5, p. 660–672, 2003.

WEBB E K, PEARMAN G I, LEUNING R. Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Meteorological Society, Wiley Online Library, v. 106, n. 447, p. 85–100, 1980.

WILCZAK J M, ONCLEY S P, STAGE S A. Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorology, Springer, v. 99, n. 1, p. 127–150, 2001.

Published

2020-08-28

How to Cite

Maboni, C., Roberti, D. R., Bremm, T., Fagundes, L. A., Veck, G. P., & Stefanello, M. (2020). Evaluation of turbulence parameters in methane fluxes for an irrigated rice paddy. Ciência E Natura, 42, e5. https://doi.org/10.5902/2179460X45265

Most read articles by the same author(s)

> >>