MEASUREMENT SCALES AND MOTIVATIONAL BACKGROUND OF VIRTUAL LEARNING ENVIRONMENTS SUPPORTED BY ARTIFICIAL INTELLIGENCE
DOI:
https://doi.org/10.5902/2675995070381Keywords:
Artificial Intelligence, Systematic review, Virtual Learning Environment, ScaleAbstract
The application of Artificial Intelligence (AI) developed Virtual Learning Environments (VLEs) and added value to technological forms of teaching. These online environments have proved essential in unexpected situations, such as the Coronavirus (COVID-19) pandemic. Therefore, this article presents a systematic bibliographic survey and a semi-systematic analysis of scales that assess AI-enhanced VLEs, focusing on the antecedents of adoption and the analysis of the scales. The results from the Web of Science, Science Direct, Springer Link, Emerald Insight, and EBSCO Host databases are exposed through descriptive quantitative analysis and comparative assessment of the scales. The results showed a scarcity of scales that assess the VLEs, and the few articles that make them lack rigor in the initial stages of development. Dimensions referring to the students' perceptions that precede the adoption of these virtual environments were also highlighted, thus evidencing determinant elements of the motivation of online students.
Downloads
References
ARGUEDAS, M.; XHAFA, F.; CASILLAS, L.; DARADOUMIS, T.; PEÑA, A.; CABALLÉ, S. A model for providing emotion awareness and feedback using fuzzy logic in online learning. Soft Computing, v. 22, p. 963–977, 2018. DOI: https://doi.org/10.1007/s00500-016-2399-0
CABADA, R.Z.; ESTRADA, M.L.B.; HERNÁNDEZ, F.G.; BUSTILLOS, R.O.; REYES-GARCÍA, C.A. An affective and Web 3.0-based learning environment for a programming language. Telematics and Informatics, v. 35, p. 611–628, 2018. DOI: https://doi.org/10.1016/j.tele.2017.03.005
CHENG, Y.-M. Extending the expectation-confirmation model with quality and flow to explore nurses’ continued blended e-learning intention. Information, Technology & People, v. 27, p. 230–258, 2014. DOI: https://doi.org/10.1108/ITP-01-2013-0024
CHEUNG, S.K.S.; KWOK, L.F.; PHUSAVAT, K.; YANG, H.H. Shaping the future learning environments with smart elements: challenges and opportunities. International Journal of Educational Technolology in Higher Education, v. 18, p. 1–9, 2021. DOI: https://doi.org/10.1186/s41239-021-00254-1
CHIU, C.M.; CHIU, C.S.; CHANG, H.C. Examining the integrated influence of fairness and quality on learners’ satisfaction and Web-based learning continuance intention. Information Systems Journal, v. 17, p. 271–287, 2007. DOI: https://doi.org/10.1111/j.1365-2575.2007.00238.x
DAVIS, F. D. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, v. 13, p. 319–340, 1989. DOI: https://doi.org/10.2307/249008
DELONE, W.H.; MCLEAN, E.R. Information Systems Success: The Quest for the Dependent Variable. Information Systems Research, v. 3, p. 60–95, 1992. DOI: https://doi.org/10.1287/isre.3.1.60
DELONE, W.H.; MCLEAN, E.R. The DeLone and McLean model of information systems success: A ten-year update. Journal of Management Information System, v. 19, p. 9–30, 2003. DOI: https://doi.org/10.1080/07421222.2003.11045748
DEVELLIS, R. F. Scale development: theory and application. 3rd ed. Beverly Hills, CA: Sage Publications, 2012.
GUO, Z.; XIAO, L.; VAN TOORN, C.; LAI, Y., SEO, C. Promoting online learners’ continuance intention: An integrated flow framework. Information & Management, v. 53, p. 279–295, 2016. DOI: https://doi.org/10.1016/j.im.2015.10.010
HALE, T.; ANGRIST, N.; CAMERON-BLAKE, E.; HALLAS, L.; KIRA, B.; MAJUMDAR, S.; PETHERICK, A.; PHILLIPS, T.; TATLOW, H.; WEBSTER, S. Variation in government responses to COVID-19. BSG Blavatnik School Working Paper. University of Oxford Version 8.0, 2020.
HEW, K.F.; JIA, C.; GONDA, D.E.; BAI, S. Transitioning to the “new normal” of learning in unpredictable times: pedagogical practices and learning performance in fully online flipped classrooms. International Journal of Educational Technology in Higher Education, v. 17, 2020. DOI: https://doi.org/10.1186/s41239-020-00234-x
JALAL, A.; MAHMOOD, M. Students’ behavior mining in e-learning environment using cognitive processes with information technologies. Education and Information Technology, v.24, p. 2797–2821, 2019. DOI: https://doi.org/10.1007/s10639-019-09892-5
JUSOH, S.; ALMAJALI, S.; ABUALBASAL, A. A study of user experience for e-learning using interactive online technologies. Journal of Theoretical and Applied Information Technology, v. 97, p. 4036–4047, 2019.
LI, H.; YU, J. Learners’ continuance participation intention of collaborative group project in virtual learning environment: an extended TAM perspective. Journal of Data, Information and Management, v. 2, p. 39–53, 2020. DOI: https://doi.org/10.1007/s42488-019-00017-8
MALDONADO, U.P.T.; KHAN, G.F.; MOON, J.; RHO, J. J. E-learning motivation, students’ acceptance/use of educational portal in developing countries: A case study of Peru. In: ICCIT 2009 - 4th INTERNATIONAL CONFERENCE ON COMPUTER SCIENCES AND CONVERGENCE INFORMATION TECHNOLOGY, Seoul, Korea (South), 2009. Anais... Seoul: 2009, p. 1431-1441. DOI: https://doi.org/10.1109/ICCIT.2009.77
MARÔCO, J. Análise de equações estruturais: Fundamentos te ricos, software & aplicações. 2 ed. Portugal: Report Number Lda, 2014.
MOHRER, et al. Principais itens para relatar Revisões sistemáticas e Meta-análises: A recomendação PRISMA. Epidemiol. Serv. Saúde. Brasília, V.24, n. 2, abr-jun. 2015. DOI: https://doi.org/10.5123/S1679-49742015000200017
MOISIL, I. I. A model of the student behaviour in a virtual educational environment. International Journal of Computer, Communications and Control, v. 3, p. 108–115, 2008.
MONDIGO, L.; LAO, D.M. E-learning for introductory Computer Science concept on recursion applying two types of feedback methods in the learning assessment. Asian Associate Open University Journal, v. 12, p. 218–229, 2017. DOI: https://doi.org/10.1108/AAOUJ-02-2017-0019
PANIGRAHI, R.; SRIVASTAVA, P.R.; PANIGRAHI, P.K. Effectiveness of e-learning: the mediating role of student engagement on perceived learning effectiveness. Information, Technology & People, v. 34, n. 7, p. 1840-1862, 2020. DOI: https://doi.org/10.1108/ITP-07-2019-0380
RAJESH, R.; REENA, M. A review on worksystem interactions in a technology enabled classroom. International Journal of Technology Enhanced Learning, v. 7, p. 99–115, 2015. DOI: https://doi.org/10.1504/IJTEL.2015.072026
ROBLEK, V.; MESKO, M.; DIMOVSKI, V.; PETERLIN, J. Smart technologies as social innovation and complex social issues of the Z generation. Kybernetes, v. 48, p. 91–107, 2019. DOI: https://doi.org/10.1108/K-09-2017-0356
SALAM, M.; FAROOQ, M.S. Does sociability quality of web-based collaborative learning information system influence students’ satisfaction and system usage? International Journal of Educational Technololy in Higher Education, n. 17, 2020. DOI: https://doi.org/10.1186/s41239-020-00189-z
SNYDER, H. Literature review as a research methodology: An overview and guidelines. Journal of Business Research, v. 104, p. 333–339, 2019. DOI: https://doi.org/10.1016/j.jbusres.2019.07.039
TOTKOV, G. Virtual learning environments: towards new generation. In: 4th International Conference On Computer Systems And Technologies: E-Learning - COMPSYSTECH, 2003. Anais... New York: Association for Computing Machinery, 2003, p. 8–16. DOI: https://doi.org/10.1145/973620.973622
UNESCO. COVID-19 educational disruption and response. 2021. Disponível em: https://en.unesco.org/themes/education-emergencies/coronavirus-school-closures. Acesso em: 14 abr. 2021.
VENKATESH, V.; MORRIS, M.G.; DAVIS, G.B.; DAVIS, F.D. User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, v. 27, p. 425–478, 2003. DOI: https://doi.org/10.2307/30036540
VODENKO, K. V; LYAUSHEVA, S.A. Science and education in the form 4.0: public policy and organization based on human and artificial intellectual capital. Journal of Intellectual Capital, v. 21, p. 549–564, 2020. DOI: https://doi.org/10.1108/JIC-11-2019-0274
WELSH, E. T.; WANBEERG, C. R.; BROWN, K. G.; SIMMERING, M. J. E-learning: emerging uses, empirical results and future directions. International Journal of Training and Development, v. 7, n. 4, p. 245-258, 2003. DOI: https://doi.org/10.1046/j.1360-3736.2003.00184.x
YUCE, A.; ABUBAKAR, A.M.; ILKAN, M. Intelligent tutoring systems and learning performance: Applying task-technology fit and IS success model. Online Information Review, v. 43, p. 600–616, 2019. DOI: https://doi.org/10.1108/OIR-11-2017-0340
Published
How to Cite
Issue
Section
License
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado, com reconhecimento de autoria e publicação inicial nesta revista.