Dynamics of forest conversion and climate trends in the Madeira river basin

Authors

DOI:

https://doi.org/10.5902/1980509865211

Keywords:

Anthropogenic impacts, Climate changes, Amazon region

Abstract

The Madeira River basin is an example of an important portion of the Amazon region that is characterized by a high rate of conversion of forest into pastures and urban centers, evidencing an accelerated transformation in land cover and use with significant anthropic activity over the last three decades, which configures a potential impact in terms of modifying the climate behavior of the region. The present work seeks to analyze, in the Madeira River basin, the hydroclimatic impacts through the study of the variability of the two main components of the water balance and the energy balance at the scale of a watershed, namely precipitation and evapotranspiration, with additional emphasis on the temperature, which has served as a world reference to specify and demarcate changes in climate, given its space-time dynamics of anthropic occupation. More specifically, the occupancy history was initially analyzed using MODIS images for the period 2001-2013. In addition, precipitation data from the CHIRPS satellite product (1981-2017), evapotranspiration data determined by the SSEBop algorithm (2002-2017) via the sensor that produces the MODIS image and surface temperature of the MODIS satellite product (2001-2017) were examined, being such information treated as geospatial variables distributed in the study area. An extensive evaluation study regarding the identification of the presence or not of linear hydroclimatic trends in the Madeira River basin was carried out using the Mann-Kendall test. Although some trends were captured in the analyzed time series, the results obtained also showed that, given the limited database currently available, there is not necessarily a direct and clear relationship between the effect of human occupation and the climate regime of the basin, in contrast to the scientific framework recommended worldwide warning of climate change in the Anthropocene. In part, the high climate variability in the study region imposes limits with respect to clearly understand and separate the signals that can be attributed to the change in land cover and use from the signals associated with climate change that act on broader spatio-temporal scales. In this sense, new studies on monitoring hydrometeorological and hydroclimatic phenomena with corresponding measurements at different scales should be encouraged to better understand the processes of aggregation and disaggregation of the physical mechanisms acting at the scale of a watershed.

Downloads

Download data is not yet available.

Author Biographies

Vinicius Alexandre Sikora de Souza, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ

Engenheiro Ambiental e Sanitário, Doutor em Engenharia Civil
Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil

Otto Corrêa Rotunno Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ

Engenheiro Civil, Doutor em Engenharia Civil, Professor
Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil

Daniel Andres Rodriguez, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ

Engenheiro de Recursos Hídricos, Doutor em Meteorologia, Professor
Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil

Daniel Medeiros Moreira, Companhia de Pesquisa de Recursos Minerais, Rio de Janeiro, RJ

Engenheiro Cartógrafo, Doutor em Engenharia Civil
Companhia de Pesquisa de Recursos Minerais, Rio de Janeiro, RJ, Brasil

Anderson Paulo Rudke, Universidade Federal de Minas Gerais, Belo Horizonte, MG

Engenheiro Ambiental, Doutorando em Saneamento, Meio Ambiente e Recursos Hídricos
Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil

Claudia Daza Andrade, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ

Engenheira Civil, Doutora em Engenharia Civil, Professora
Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brasil

References

ALLEN, R. G.; TASUMI, M.; TREZZA, R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) – Model. ASCE J. Irrigation and Drainage Engineering, Reston, v. 133, n. 4, p. 380-394, ago. 2007.

BARICHIVICH, J. et al. Recent intensification of Amazon flooding extremes driven by strengthened Walker circulation. Science Advances, v. 4, n. 9, p. eaat8785, set. 2018.

BASTIAANSSEN, W. G. M; MENENTI, R. A.; FEDDES, M.; HOLTSLAG, A. A. M. The surface energy balance algorithm for land (SEBAL): Part 1 formulation. Journal of Hydrology, Amsterdam, v. 212, p. 198–212, dez. 1998.

CAVALCANTE, R. B. L.; PONTES, P. R. M.; SOUZA‐FILHO, P. W. M.; DE SOUZA, E. B. Opposite effects of climate and land use changes on the annual water balance in the Amazon arc of deforestation. Water Resources Research, Washington, v. 55, n. 4, p. 1-18, abr. 2019.

CHAMBERS, J. Q.; ARTAXO, P. Deforestation size influences rainfall. Nature Climate Change, [s.l], v. 7, n. 3, p. 175-176, fev. 2017.

DINKU, T.; FUNK, C.; PETERSON, P.; MAIDMENT, R.; TADESSE, T.; GADAIN, H.; CECCATO, P. Validation of the CHIRPS satellite rainfall estimates over eastern Africa. Quarterly Journal of the Royal Meteorological Society, Chichester, v. 144, p. 292-312, abr. 2018.

EAGLESON, P. S. Ecohydrology: A Darwinian Expression of Vegetation Form and Function. Cambridge: Cambridge University Press, 2002.

GETIRANA, A. C. V; RONCHAIL, J.; ROTUNNO FILHO, O. C.; ESPINOZA, J. C. V. Assessment of different precipitation datasets and their impacts on the water balance of the Negro River basin. Journal of Hydrology, Amsterdam, v. 404, n. 3-4, p. 304-322, jul. 2011.

GLOOR, M. et al. Intensification of the Amazon hydrological cycle over the last two decades: AMAZON HYDROLOGIC CYCLE INTENSIFICATION. Geophysical Research Letters, v. 40, n. 9, p. 1729–1733, 16 maio 2013.

KENDALL M. G. Rank Correlation Methods. London: Charles Griffin, 1975.

KHANNA, J.; MEDVIGY, D.; FUEGLISTALER, S.; WALKO, R. Regional dry-season climate changes due to three decades of Amazonian deforestation. Nature Climate Change, [s.l], v. 7, n. 3, p. 200-204, fev. 2017.

LE PAGE, Y.; MORTON, D.; HARTIN, C.; BOND-LAMBERTY, B.; PEREIRA, J. M. C.; HURTT, G.; ASRAR, G. Synergy between land use and climate change increases future fire risk in Amazon forests. Earth System Dynamics, Göttingen, v. 8, n. 4, p. 1237-1246, dez. 2017.

LUIZ SILVA, W.; XAVIER, L.N.R.; MACEIRA, M. E. P.; ROTUNNO FILHO, O. C. Climatological and hydrological patterns and verified trends in precipitation and streamflow in the basins of Brazilian hydroelectric plant. Theoretical and Applied Climatology, v. 137, n. 1, p. 351-373, 2019.

MANN H. B. Nonparametric tests against trend. Econometrica: Journal of the econometric society, Malden, v. 13, n. 3, p. 245-259, jul. 1945.

MARENGO, J. A.; BETTS R. Riscos das mudanças climáticas no Brasil. Análise conjunta Brasil-Reino Unido sobre os impactos das mudanças climáticas e do desmatamento na Amazônia. São Paulo: CCST-INPE; 2011.

MOLINA, R. D.; SALAZAR J. F.; MARTÍNEZ J. A.; VILLEGAS J. C.; ARIAS P. A. Forest‐induced exponential growth of precipitation along climatological wind streamlines over the Amazon. Journal of Geophysical Research: Atmospheres, Washington, v. 124, n. 5, p. 2589-2599, fev. 2019.

PANDAY, P. K.; COE, M. T.; MACEDO, M. N.; LEFEBVRE, P.; CASTANHO, A. D. A. Deforestation offsets water balance changes due to climate variability in the Xingu River in eastern Amazonia. Journal of Hydrology, Amsterdam, v. 523, p. 822-829, abr. 2015.

PEEL, M. C.; FINLAYSON, B. L.; MCMAHON, T. A. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, Göttingen, v. 11, n. 5, p. 1633-1644, out. 2007.

PIELKE, R. A. Land use and climate change. Science, [s.l], v. 310, n. 5754, p. 1625-1626, dez. 2005.

RODRIGUEZ, D. A.; TOMASELLA, J; LINHARES, C. Is the forest conversion to pasture affecting the hydrological response of Amazonian catchments? Signals in the Ji‐Paraná Basin. Hydrological Processes, Chichester, v. 24, n. 10, p. 1254-1269, 2010.

SALATI, E.; LOVEJOY, T. E.; VOSE, P. B. Precipitation and water recycling in tropical rain forests with special reference to the amazon basim. Environmentalist, [s.l], v. 3, n. 1, p. 67-72, mar. 1983.

SALATI, E.; CAMPANHOL, T.; VILLA NOVA, N. Tendências das variações climáticas para o Brasil no século XX e balanços hídricos para cenários climáticos para o século XXI. Relatório 3. Brasília: Ministério do Meio Ambiente, 2007.

SANTOS, I. A.; BUCHMAN, J. Uma Revisão Qualitativa Enfatizando Aspectos Climáticos da Amazônia e da Região Nordeste do Brasil. Anuário do Instituto de Geociências, Rio de Janeiro, v. 33, n. 2, p. 9-23, 2010.

SCHIELEIN, J.; BÖRNER, J. Recent transformations of land-use and land-cover dynamics across different deforestation frontiers in the Brazilian Amazon. Land use policy, [s.l], v. 76, p. 81-94, maio 2018.

SENAY, G. B.; BOHMS, S.; SINGH, R. K.; GOWDA, P. H.; VELPURI, N. M.; ALEMU, H.; VERDIN, J. P. Operational evapotranspiration mapping using remote sensing and weather datasets: a new parameterization for the SSEB approach. Journal of the American Water Resources Association, Malden, v. 49, n. 3, p. 577-591, maio 2013.

SHANNON, C. E. A mathematical theory of communication. The Bell System Technical Journal, [s.l], v. 27, n. 3, p. 379-423, jul. 1948.

SOUZA, V. A. S. DE, MOREIRA, D. M., ROTUNNO FILHO, O. C., RUDKE, A. P., ANDRADE, C. D., & DE ARAUJO, L. M. N. Spatio-temporal analysis of remotely sensed rainfall datasets retrieved for the transboundary basin of the Madeira River in Amazonia. Atmósfera, Cidade do México, v. 35, n.1, p. 39–66, 2021.

SPRACKLEN, D. V.; BAKER, J. C. A.; GARCIA-CARRERAS, L.; MARSHAM, J. H. The Effects of Tropical Vegetation on Rainfall. Annual Review of Environment and Resources, Palo Alto, v. 43, n. 1, p. 193-218, out. 2018.

SPRACKLEN, D. V.; GARCIA-CARRERAS, L. The impact of Amazonian deforestation on Amazon basin rainfall. Geophysical Research Letters, Washington, v. 42, n. 21, p. 9546-9552, nov. 2015.

VARIKODEN, H.; PREETHI. B.; REVADEKAR, J. V. Diurnal and spatial variation of Indian summer monsoon rainfall using tropical rainfall measuring mission rain rate. Journal of Hydrology, Amsterdam, v. 475, p. 248-258, dez. 2012.

VILLAR, E. J. C. et al. Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador). International Journal of Climatology, [s.l.] v. 29, n. 11, p. 1574-1594, 2009.

WAN, Z.; LI, Z. L. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data. IEEE Transactions on Geoscience and Remote Sensing, Piscataway, v. 35, n. 4, p. 980-996, jul. 1997.

WANG, X.; EDWARDS, R. L.; AULER, A. S.; CHENG, H.; KONG, X.; WANG, Y.; CRUZ JÚNIOR, F. W.; DA DORALE, J. A.; CHIANG, H-W. Hydroclimate changes across the Amazon lowlands over the past 45,000 years. Nature, Londres, v. 541, n. 7636, p. 204-207, jan. 2017.

WANG, X.-Y. et al. The strengthening of Amazonian precipitation during the wet season driven by tropical sea surface temperature forcing. Environmental Research Letters, v. 13, n. 9, p. 094015, 2018.

WANG, Z.; KIM, Y.; SEO, H.; UM M.; MAO J. Permafrost response to vegetation greenness variation in the Arctic tundra through positive feedback in surface air temperature and snow cover. Environmental Research Letters, Bristol, v. 14, n. 4, p. 044024, abr. 2019.

ZEMP, D. C.; SCHLEUSSNER, C. F.; BARBOSA, H. M.; HIROTA, M.; MONTADE, V.; STAAL, A.; WANG-ERLANDSSON, L.; RAMMIG, A. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nature communications, Londres, v. 8, n. 1, p. 1-10, mar. 2017.

Published

2022-11-23

How to Cite

Souza, V. A. S. de, Rotunno Filho, O. C., Rodriguez, D. A., Moreira, D. M., Rudke, A. P., & Andrade, C. D. (2022). Dynamics of forest conversion and climate trends in the Madeira river basin. Ciência Florestal, 32(4), 2007–2034. https://doi.org/10.5902/1980509865211

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.