Photosynthetic responses of <i>Eucalyptus seedlings</i> submitted to chemical and mechanical stimulus
DOI:
https://doi.org/10.5902/1980509830685Keywords:
Jasmonic acid, Stem bending, Quality of seedlings, Clone 1528Abstract
This work aimed to investigate the photosynthetic responses of Eucalyptus urophylla x Eucalyptus grandis hybrids 1528 submitted to the application of jasmonic acid (JA) and stem bending. The experiment was conducted in a shade house using a completely randomized design with five replicates of 20 seedlings, with the following treatments: T1: control, T2: 8.0 μmol of JA and T3: 40 stem bending. The net assimilation rate of CO2 (A), stomatal conductance (gs), internal CO2 concentration (Ci), leaf transpiration rate (E), water use efficiency (WUE), intrinsic efficiency of use of Water (iWUE) and carboxylation efficiency (Fc) were measured with an IRGA. The dose of JA applied to the seedlings was insufficient to alter the photosynthetic responses in relation to the control treatment. Mechanical stimuli induced by stem bending in eucalyptus hybrid 1528 seedlings promoted an increase in the maximum photosynthetic capacity and maximum assimilation of CO2, but the seedlings presented a reduction in the efficiency of the water use, that is, lower photosynthetic efficiency when compared to the seedlings submitted to other treatments. Seedlings of eucalyptus hybrid 1528 submitted to mechanical stimuli and jasmonic acid show greater respiration under low flow levels of photosynthetically active photons.
Downloads
References
ASSIS, T.F.; MAFIA, R.G. Hibridação e clonagem. In: BORÉM, A. (Ed.). Biotecnologia Florestal. Viçosa: Universidade Federal de Viçosa, p. 93-121, 2007.
ATTARAN, E.; MAJOR, I.T.; CRUZ, J.A.; ROSA, B.A.; KOO, A.J.; CHEN, J.; KRAMER, D.M.; HE, S.Y.; HOWE, G.A. Temporal dynamics of growth and photosynthesis suppression in response to jasmonate signaling. Plant Physiol, v.165, p.1302–1314, 2014.
BALLARÉ, C.L. Illuminated behaviour: phytochrome as a key regulator of light foraging and plant anti-herbivore defence. Plant Cell Environ, v.32, p.713–725, 2009.
BLECHERT, S.; BOCKELMANN, C.; FUSSLEIN, M.; VON SCHRADER, T.; STELMACH, B.; NIESEL, U.; WEILER, E.W. Structure–activity analyses reveal the existence of two separate groups of active octadecanoids in elicitation of the tendril-coiling response of Bryonia dioica Jacq. Planta, v.207, p.470–479, 1999.
BORCIONI, E.; NEGRELLE, R. R. B. Aplicação de análogo de brassinosteroide (Biobras 16®) sobre a germinação e crescimento in vitro de embriões zigóticos e aclimatização de plântulas de bocaiúva. Ciência Rural, Santa Maria, v. 42, n. 2, p. 270-275, fev. 2012.
BRACELPA – Associação Brasileira de Celulose e Papel. Desempenho do setor em 2006 e projeções para 2007. São Paulo, 2008. 8 p. Disponível em: http://www.bracelpa.org.br/bra/estatisticas/pdf/anual/desempenho_2006.pdf. Acesso em: 16 jan. 2016.
CADORIN, D. A.; MALAVASI, U. M.; COUTINHO, P. W. R.; DRANSKI, J. A. L. MALAVASI, M. M. Metil jasmonato e flexões caulinares na rustificação e crescimento inicial de mudas de Cordia trichotoma. CERNE, v. 21, n. 4, p. 657-664, 2015.
CAMPOS, M. K. F. et al. Drought tolerance and antioxidant enzymatic activity in transgenic ‘Swingle’ citrumelo plants over-accumulating proline. Environmental and Experimental Botany, Oxford, v. 72, n. 2, p. 242-250, 2011.
CARVALHO, A. M.; NAHUZ, M. A. R. Valorização da madeira do híbrido Eucalyptus grandis x Eucalyptu surophylla através da produção conjunta de madeira serrada em pequenas dimensões, celulose e lenha. Scientia Forestalis, n. 59, p. 61-76. 2001.
CHAVARRIA, G.; SANTOS, H.P. Plant water relations: absorption, transport and control mechanisms. In: MONTANARO, G.; DICHIO, B. (Org.). Advances in selected plant physiology aspects. Rijeka: Intech, 2012. v.1, p.105-132.
CHINI, A.; FONSECA, S.; FERNÁNDEZ, G.; ADIE, B.; CHICO, J.M.; LORENZO, O.; GARCÍA-CASADO, G.; LÓPEZ-VIDRIERO, I.; LOZANO, F.M.; PONCE, M.R.; MICOL, J.L.; SOLANO, R. The JAZ family of repressors is the missing link in jasmonate signalling. Nature, v.448, p.666-671, 2007.
CHUNG, H.S.; HOWE, G.A. A critical role for the TIFY motif in repression of jasmonate signaling by a stabilized splice variant of the JASMONATE ZIM domain protein JAZ10 in Arabidopsis. Plant Cell, v.21, p.131-145, 2009.
CHUNG, H.S.; KOO, A.J.K.; GAO, X.; JAYANTY, S.; THINES, B.; JONES, A.D.; HOWE, G.A. Regulation and function of Arabidopsis JASMONATE ZIM-domain genes in response to wounding and herbivory. Plant Physiology, v.146, p.952–964, 2008.
CRAMER GR. Abiotic stress and plant responses from the whole vine to the genes. Australian Journal of Grape and Wine Research, 16:86-93. 2010.
CREELMAN, R.A.; MULLET, J.E. Biosynthesis and action of jasmonates in plants. Annual Review of Plant Physiology and Plant Molecular Biology, v.48, p.355-381, 1997.
DEUNER, C.; BORGES, C.T.; ALMEIDA, A.S.; MENEGHELLO, G.E.; TUNES, L.V.M. Ácido jasmónico como promotor de resistência em plantas. Revista de Ciências Agrárias, v.38, n.3, p.275-281, 2015.
DRANSKI, J.A.L.; MALAVASI, U.C.; MALAVASI, M.M. Relationship between lignin content and quality of Pinus taeda seedlings. Revista Árvore (Online), v. 39, p. 905-913, 2015.
DRANSKI, J. A. L.; PINTO JÚNIOR, A. S.; CAMPAGNOLO, M. A.; MALAVASI, U. C.; MALAVASI, M. M. Desenvolvimento inicial de mudas de pinhão manso depende da intensidade de desfolha. Magistra, Cruz das Almas – BA, V. 28, N.2, p.700-709, Abr./Jun.2016
ENDRES, L.; SOUZA, J. L.; TEODORO, L.; MARROQUIM, P. M. G.; SANTOS, C. M.; BRITO, J. E. D. Gas exchange alteration caused by water deficit during the bean reproductive stage. Revista Brasileira de Engenharia Agrícola e Ambiental, v.14, p.11-16, 2010.
FERRIERI, A.P.; AGTUCA, B.; APPEL, H.M.; FERRIERI, R.A.; SCHULTZ, J.C. Temporal changes in allocation and partitioning of new carbon as 11C elicited by simulated herbivory suggest that roots shape aboveground responses in Arabidopsis. Plant Physiology, v.161, p.692-704, 2013.
FRANCISCO, A. A.; TAVARES, A. R.; KANASHIRO, S.; RAMOS, P. R. R.; LIMA, G. P. P. Reguladores e teores endógenos de poliaminas durante o desenvolvimento de taro cultivado in vitro. Ciência Rural, Santa Maria, v. 38, n. 5, p. 1251-1257, ago. 2008.
FRANK, S.; ROSS, S. Plant Physiology, 4 ed. California: Wadsworth, 1991.
GLAUSER, G.; GRATA, E.; DUBUGNON, L.; RUDAZ, S.; FARMER, E.E.; WOLFENDER, J.L. Spatial and temporal dynamics of jasmonate synthesis and accumulation in Arabidopsis in response to wounding. Journal of Biological Chemistry, v.283, p.16400–16407, 2008.
GONÇALVES, K. S.; SOUSA, A.P.; VELINI, E.D.S. Aplicação de reguladores vegetais e de fosfito de potássio em mudas de eucalipto submetidas à deficiência hídrica. Irriga, v.20, n.2, p.273-285, 2015.
HEIJARI, J.; NERG, A.M.; KAINULAINEN, P.; VIIRI, H.; VUORINEN, M.; HOLOPAINEN, J.K. Application of methyl jasmonate reduces growth but increases chemical defence and resistance against Hylobius abietis in Scots pine seedlings. The Netherlands Entomological Society. Entomologia Experimentalis et Applicata, v.115, p.117–124, 2005.
HRISTOVA, V.A.; POPOVA, L.P. Treatment with methyl jasmonate alleviates the effects of paraquat on photosynthesis in barley plants. Photosynthetica, v.40, p.567–574, 2002.
JACOBS, D.F.; LANDIS, T.D. Hardening. In: DUMROESE, R.K.; LUNA, T.; LANDIS, T.D. (Eds.). Nursery manual for native plants: Guide for tribal nurseries. v.1. Washington: United States Department of Agriculture, Forest Service, 2009. p. 217-228.
JAFFE, M. J. Thigmomorphogenesis: the response of plant growth and development to mechanical stimulation with special reference to Bryoniadioica. Planta, v.114, n.2, p.143-156, 1973.
KERBAUY, G.B. Fisiologia Vegetal. 2. ed. Rio de Janeiro: Guanabara Koogan, 2012.
KERN, A.K.; WERS, W.F.; TELEWSKI, W.F.; KOEHLER, L. Mechanical perturbation affects conductivity, mechanical properties and aboveground biomass of hybrid poplars. Tree Physiology, v. 25, n. 10, p. 1243-1251, 2005.
KOO, A.J.K.; GAO, X., JONES, A.D.; HOWE, G.A. A rapid wound signal activates systemic synthesis of bioactive jasmonates in Arabidopsis. The Plant Journal, v.59, p.974-986, 2009.
LIBERATO, M. A. R. et al. Leaf water potential, gas exchange and chlorophyll a fluorescence in acariquara seedlings (Minquartia guianensis Aubl.) under water stress and recovery. Brazilian Journal of Plant Physiology, Londrina, v. 18, p.315-323, 2006.
LOBATO, A. K. S.; OLIVEIRA NETO, C. F.; COSTA, R. C. L.; SANTOS FILHO, B. G.; CRUZ, F. J. R.; LAUGHINGHOUSE, H. D. Biochemical and physiological behavior of Vigna unguiculata (L.) Walp. under water stress during the vegetative phase. Asian
Journal of Plant Sciences, Pakistan, v. 7, n. 1, p. 44-49, 2008.
LOPEZ, F. B.; CHAUHAN, Y.S.; JOHANSEN, C. Effects of timing of drought stress on leaf area development an canopy light interception of short-duration pigeon pea. Journal of Agronomy and Crop Science, California, v. 178, n. 1, p. 1-7, 2008
LORENZO, O.; SOLANO, R. Molecular players regulating the jasmonate signalling network. Curr. Opin. Plant Biology, v.8, p.532–540, 2005.
MACHADO, E.C.; SCHMIDT, P.T.; MEDINA, C.L.; RIBEIRO, R.V. Respostas da fotossíntese de três espécies de citros a fatores ambientais. Pesquisa Agropecuária Brasileira, v.40, p.1161 1170, 2005.
MARENCO, R. A.; LOPES, N. F. Fisiologia vegetal: fotossíntese, respiração, relações hídricas e nutrição mineral. 3ªed. Editora UFV, Viçosa. 2009. 486p.
MARSCHNER, H. Mineral nutrition of higher plants. 3rd Edition. Academic Press. San Diego. 2011. 672p.
MARTÍN, F. J. P. Respuestas inducidas por ácido abscísico y ácido salicílico en las
simbiosis de judía y alfalfa en estrés salino. 2009. 395 f. Tese (Doutorado em Ciencias
Biológicas) – Faculdade de Ciencias, Universidade de Granada, Granada, 2009.
MCCORMICK, A. J.; CRAMER, M.; WATT, D. A. Changes in photosynthetic rates and gene expression of leaves during a source-sink perturbation in sugarcane. Annals of Botany, 101(1), 89-102. 2008. DOI: https://doi.org/10.1093/aob/mcm258
MELDAU, S.; ERB, M.; BALDWIN, I.T. Defence on demand: mechanisms behind optimal defence patterns. Annals of Botany, v.110, p1503–1514, 2012.
MIERSCH, O.; KRAMELL, R.; PARTHIER, B.; WASTERNACK, C. Structure–activity relations of substituted, deleted or stereospecifically altered jasmonic acid in gene expression of barley leaves. Phytochemistry, v.50, p.353–361, 1999.
MILBURN J. Water flow in plants. London: Longman; 1979.
MORA, A. L.; GARCIA, C. H. A cultura do eucalipto no Brasil. São Paulo, Sociedade Brasileira de Silvicultura, 2000. 112 p.
ORO, P.; VOLKWEIS, R.C.; NEIVERTH W.; DRANSKI, J.A.L.; MALAVASI, U.C.; MALAVASI, M.M. Aplicação de regulador vegetal na aclimatação de mudas de Cariniana estrellensi. Cultivando o Saber, v. 5, n.4, p. 103-112, 2011.
PEREIRA, M.R.R.; KLAR, A.E.; SILVA, M.R.; SOUZA, R.A.; FONSECA, N.R. Comportamento fisiológico e morfológico de clones de Eucalyptus urograndis submetidos a diferentes níveis de água no solo. Irriga, v.11, n.4, p.518-531, 2006.
POLIZEL, A. M.; MEDRI, M. E.; NAKASHIMA, K.; YAMANAKA, N.; FARIAS, J. R.; OLIVEIRA, M. C.; MARIN, S. R.; ABDELNOOR, R. V.; MARCELINO-GUIMARÃES, F. C.; FUGANTI, R.; RODRIGUES, F. A.; STOLF-MOREIRA, R.; BENEVENTI, M. A.; ROLLA, A. A.; NEUMAIER, N.; YAMAGUCHI-SHINOZAKI, K.; CARVALHO, J. F.; NEPOMUCENO, A. L. Molecular, anatomical and physiological properties of a genetically modified soybean line transformed with rd29A:AtDREB1A for the improvement of drought tolerance. Genetics and molecular research: GMR, v. 10, n. 4, p. 3641–56, jan. 2011.
PORTAL FLORESTAL. Clone – AEC 1528 – Super Clone. <http://www.portalflorestal.com.br/portfolio/mudas-de-eucalipto-clonado-a-venda-clone-aec-1528-super-clone/>. Acesso em: 08/11/2016.
PRADO, C.H.B.A.; MORAES, J.A.P.V. Photosynthetic capacity and specific leaf mass in twenty woody species of Cerrado vegetation under field conditions. Photosynthetica, v.33, p.103-112, 1997.
RIBOT, C.; ZIMMERLI, C.; FARMER, E.E.; REYMOND, P.; POIRIER, Y. Induction of the Arabidopsis PHO1; H10 gene by 12-oxo-phytodienoic acid but not jasmonic acid via a CORONATINE INSENSITIVE1-dependent pathway. Plant Physiology, v.147, p.696-706, 2008.
SANCHEZ, F. Jasmonatos: compuestos de alto valor para la agricultura: actividad biológica y ruta biosintética del ácido jasmónico en plantas. Revista ICIDCA, La Habana, v. 42, n. 1-3, p. 51-59, 2008.
SCHWACHTJE, J.; MINCHIN, P.E.H.; JAHNKE, S.; VAN DONGEN, J.T.; SCHITTKO, U.; BALDWIN, I.T. SNF1-related kinases allow plants to tolerate herbivory by allocating carbon to roots. Proceedings of the National Academy of Sciences, v.103, p.12935-12940, 2006.
SINCLAIR, T. R.; HORIE, T. Leaf nitrogen, photosynthesis, and crop radiation use efficiency: a review. Crop Science, v.29, p.90-98, 1989.
SILVA, M. A.; JIFON J. L, DA SILVA JAG, SHARMA V. Use of physiological parameters as fast tools to screen for drought tolerance in sugarcane. Brazilian Journal of Plant Physiology, Piracicaba, v. 19, n. 3, p. 193-201, 2007.
SKIRYCZ A, INZE D. More from less: plant growth under limited water. Current Opinion in Biotechnology, 21:197-203. 2010.
SOARES, A.M.S.; MACHADO, O.L.T. Defesa de plantas: sinalização química e espécies reativas de oxigênio. Revista Trópica – Ciências Agrárias e Biológicas, v.1, n.1, p.9-19, 2007.
STINTZI, A.; WEBER, H.; REYMOND, P.; BROWSE, J.; FARMER, E.E. Plant defense in the absence of jasmonic acid: the role of cyclopentenones. Proceedings of the National Academy of Sciences, v.98, p.12837–12842, 2001.
SUHITA, D.; KOLLA, V.A.; VAVASSEUR, A.; RAGHAVENDRA, A.S. Different signaling pathways involved during the suppression of stomatal opening by methyl jasmonate or abscisic acid. Plant Science, v.164, p.481–488, 2003.
TAIZ, L.; ZEIGER, E. Fisiologia vegetal. 5. ed. Porto Alegre: Artmed, 2013. 954 p.
TAIZ, L.; ZEIGER, E.; MOLLER, I.M.; MURPHY, A. Fisiologia e Desenvolvimento Vegetal. Artmed, 6ª ed. Porto Alegre-RS, 888 p. 2017.
THINES, B.; KATSIR, L.; MELOTTO, M.; NIU, Y.; MANDAOKAR, A.; LIU, G.; NOMURA, K.; HE, S.Y.; HOWE, G.A.; BROWSE, J. JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature, v.448, p.661–665, 2007.
ULLMANN-ZEUNERT, L.; STANTON, M.A.; WIELSCH, N.; BARTRAM, S.; HUMMERT, C.; SVATOŠ, A.; BALDWIN, I.T.; GROTEN, K. Quantification of growthdefense trade-offs in a common currency: nitrogen required for phenolamide biosynthesis is not derived from ribulose-1,5-bisphosphate carboxylase/oxygenase turnover. Plant Journaul, v.75, p.417–429, 2013.
VOLKWEIS, R.C.; DRANSKI, J.A.L.; ORO, P.; MALAVASI, U.C.; MALAVASI, M.M. Efeito da tigmomorfogênese na morfometria de mudas de Maytenus ilicifolia (Schrad.) Planch. Ciência Florestal, v. 24, n.2, p. 339- 342, 2014.
WANG, L.; ALLMANN, S.; WU, J.; BALDWIN, I.T. Comparisons of LOX3- and JAR4/6-silenced plants reveal that JA and JA-AA conjugates play diferente roles in herbivore resistance of Nicotiana attenuata. Plant Physiology, v.146, p.904–915, 2008.
WASTERNACK, C. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Annals of Botany, v.100, p.681–697, 2007.
YAN, Y.; STOLZ, S.; CHETELAT, A.; REYMOND, P.; PAGNI, M.; DUBUGNON, L.; FARMER, E.E. A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell, v.19, p.2470–2483, 2007.
YASUDA, M. et al. Antagonistic interaction between systemic acquired resistance and the abscisic acid–mediated abiotic stress response in Arabidopsis. The Plant Cell, v. 20, p. 1678-1692, 2008.
ZHANG, S.; LI, Q.; MA, K.; CHEN, L. Temperature dependent gas exchange and stomatal/non-stomatal limitation to CO2 assimilation of Quercus liaotungensis under midday higher irradiance. Photosynthetica, Prague, v.39, p. 383-388, 2001.