SELEÇÃO DE SEMENTES DE ESPÉCIES ARBÓREAS PARA A RESTAURAÇÃO DE PAISAGENS EM MEIO ÀS MUDANÇAS CLIMÁTICAS

Marlene de Matos Malavasi, Antony Swick Davis, Ubirajara Contro Malavasi

Resumo


Se as alterações climáticas prosseguirem como previsto, as plantas bem adaptadas ao clima atual estarão crescendo sob condições subótimas. Projetos de restauração florestal devem ser baseados no conhecimento científico especifico sob mudanças climáticas. A revegetação com espécies nativas é identificado como uma solução parcial para muitos problemas de paisagem e da biodiversidade ligados à restauração. O material vegetal pode ser selecionado localmente ou em locais mais distantes dentro da ocorrência das espécies. Nas últimas décadas, o material genético para projetos de revegetação foi, muitas vezes, coletado localmente. No entanto, a seleção de sementes de espécies lenhosas para a restauração ecológica é uma questão altamente complexa. As plantas atualmente adaptadas ao local poderão futuramente não se readaptarem. As estratégias de adaptação resultantes das alterações climáticas nem sempre poderão ocorrer através de simples mudança de fontes de sementes ao longo de gradientes ambientais. A restauração através do estabelecimento de populações de espécies lenhosas geneticamente diversas e adequadas à estabilidade do ecossistema não tem sido frequentemente avaliada. Esta revisão pretende discutir aspectos relevantes da seleção de sementes de espécies lenhosas para futuros projetos de restauração. Utilizaram-se manuscritos abordando sementes de espécies arbóreas revisados e publicados nas últimas duas décadas independentemente dos continentes.


Palavras-chave


germinação de sementes; espécies nativas; adaptação vegetal; genética de sementes.

Texto completo:

PDF

Referências


AITKEN, S. N.; WHITLOCK, M. C. Assisted gene flow to facilitate local adaptation to climate change. Annual Review of Ecology, Evolution and Systematics, Palo Alto, v. 44, p. 367-388, 2013.

BASKIN, C. C.; BASKIN, J. M. Seeds: ecology, biogeography, and evolution of dormancy and germination. San Diego: Academic Press, 1998. 666 p.

BECHARA, F. C. et al. Neotropical rainforest restoration: comparing passive, plantation and nucleation approaches. Biodiversity and Conservation, New York, v. 25, p. 2021-2034, 2016.

BISCHOFF, A. et al. Detecting local adaptation in widespread grassland species - the importance of scale and local plant community. Journal of Ecology, London, v. 94, p. 1130-1142, 2006.

BOWER, A. D.; AITKEN S. N. Ecological genetics and seed transfer guidelines for Pinus albicaulis (Pinaceae). American Journal of Botany, St. Louis, v. 95, p. 66-76, 2008.

BOZZANO, M. et al. Genetic considerations in ecosystem restoration using native tree species. State of the World’s Forest Genetic Resources – Thematic Study. Rome: FAO, 2014, 283 p.

BRESSON, C. C. et al. To what extent is altitudinal variation of functional traits driven by genetic adaptation in European oak and beech? Tree Physiology, Oxford, v. 31, p. 1164-1174, 2011.

BROADHURST. L.; YOUNG, A. Seeing the wood and the trees-predicting the future for fragmented plant populations in Australian landscapes. Australian Journal of Botany, Clayton South, v. 55, p. 250-260, 2007.

BROADHURST, L. M. et al. Seed supply for broadscale restoration: maximizing evolutionary potential. Evolutionary Applications, Malden, v. 1, p. 587-597, 2006.

BUSSELL, J. D. et al. Rapid genetic delineation of local provenance seed collection zones for effective rehabilitation of an urban bushland remnant. Austral Ecology, Malden, v. 31, p. 164-75, 2006.

BYRNE, M. et al. Adaptation to climate in widespread eucalypt species. Gold Coast: National Climate Change Adaptation Research Facility, 2013. 86 p.

BYRNE, M.; STONE, L.; MILLAR, M. A. Assessing genetic risk in revegetation. Journal of Applied Ecology, London, v. 48, p. 1365-1373, 2011.

CERVERA, J. C.; PARRA-TABLA, V. Seed germination and seedling survival traits of invasive and noninvasive congeneric Ruellia species (Acanthaceae) in Yucatan, Mexico. Forest Ecology and Management, Amsterdam, v. 261, p. 1121-1142, 2009.

CHRISTMAS, M. J.; BREED, M. F.; LOWE, A. J. Constraints to and conservation implications for climate change adaptation in plants. Conservation Genetics, New York, v. 17, p. 305-320, 2016.

CLEWELL, A. F.; ARONSON, J. Ecological restoration: principles, values and structure of an emerging profession. Washington: Island Press, 2007. 303 p.

CLOSE, D. C. et al. Can climate at the seed-source predict the success of eucalypts planted on sites that have been grazed for over 100 years? Forest Ecology and Management, Amsterdam, v. 259, p. 1025-032, 2010.

COCHRANE, A. Can sensitivity to temperature during germination help predict global warming vulnerability? Seed Science Research, Cambridge, v. 26, p. 14-29, 2016.

COCHRANE, A. et al. Will among-population variation in seed traits improve the chance of species persistence under climate change? Global Ecology and Biogeography, Malden, v. 24, p. 12-24, 2015.

DE KORT, H. et al. An evaluation of seed zone delineation using phenotypic and population genomic data on black alder Alnus glutinosa. Journal of Applied Ecology, London, v. 51, p. 1218-1227, 2014.

DUKES, J. S.; MOONEY, H. A. Does global change increase the success of biological invaders? Trends in Ecology Evolution, Cambridge v. 14, p. 135-139, 1999.

FERNANDEZ-PASCUAL, E. et al. A local dormancy cline is related to the seed maturation environment, population genetic composition and climate. Annals of Botany, Exeter, v. 112, p. 937-945, 2013.

FREI, E. R. et al. Plant population differentiation and climate change: responses of grassland species along an elevational gradient. Global Change Biology, Malden, v. 20, p. 441-455, 2014.

HAMANN, A.; GYLANDER, T.; CHEN, P. Y. Developing seed zones and transfer guidelines with multivariate regression trees. Tree Genetics & Genomes, New York, v. 7, p. 399-408, 2011.

HEREFORD, J. A quantitative survey of local adaptation and fitness trade-offs. American Naturalist, Chicago, v. 173, p. 579-588, 2009.

HIERRO, J. L. et al. Germination responses of an invasive species in native and non-native ranges. Oikos, Lund, v. 118, p. 529-38, 2009.

HOFFMANN, A. A.; SGRO, C. M. Climate change and evolutionary adaptation. Nature, New York, v. 470, p. 479-485, 2011.

HUFFORD, K. M.; MAZER, S. J. Plant ecotypes: genetic differentiation in the age of ecological genetics. Trends in Ecology & Evolution, Cambridge, v. 18, p. 147-155, 2003.

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE. Climate Change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007. 23 p.

JOHNSON, G. R. et al. Pacific Northwest forest tree seed zones: a template for native plants? Native Plants, Madison, v. 5, p. 131-140, 2004.

JOHNSON, R. et al. What are the best seed sources for ecosystem restoration on BLM and USFS lands? Native Plants, Madison, v. 11, p. 117-131, 2010.

JONES, T. A.; MONACO, T. A. A restoration practitioner's guide to the restoration gene pool concept. Ecological Restoration, Madison, v. 25, p. 12-19, 2007.

JONES, T. A.; MONACO, T. A. A role for assisted evolution in designing native plant materials for domesticated landscapes. Frontiers in Ecology and the Environment, Washington, v. 7, p. 541-547, 2009.

KETTENRING, K. M. et al. Editor’s choice: application of genetic diversity-ecosystem function research to ecological restoration. Journal of Applied Ecology, London, v. 51, p. 339-348, 2014.

KRAMER, A. T.; HAVENS, K. Plant conservation genetics in a changing world. Trends in Plant Science, Cabridge, v. 14, p. 599-607, 2009.

KRAUSS, S. L. et al. An ecological genetic delineation of local seed-source provenance for ecological restoration. Ecology and Evolution, Nueremberg, v. 3, p. 2138-2149, 2013.

KRAUSS, S. L.; KOCH, J. M. Methodological insights: rapid genetic delineation of provenance for plant community restoration. Journal of Applied Ecology, London, v. 41, p. 1162-1173, 2004.

KREMER, A. et al. Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecology Letters, Malden, v. 15, p. 378-392, 2012.

LAMBERT, A. M.; BAER, S. G.; GIBSON, D. J. Intraspecific variation in ecophysiology of three dominant prairie grasses used in restoration: cultivar versus non-cultivar population sources. Restoration Ecology, Washington, v. 19, p. 43-52, 2011.

LESICA, P.; ALLENDORF, F. W. Ecological genetics and the restoration of plant communities: mix or match? Restoration Ecology, Washington, v. 7, p. 42-50, 1999.

LIEPE, K. J. et al. Adaptation of lodgepole pine and interior spruce to climate: implications for reforestation in a warming world. Evolutionary Applications, Malden, v. 9, p. 409-419, 2016.

LORTIE, C. J. et al. Cage matching: head to head competition experiments of an invasive plant species from different regions as a means to test for differentiation. PLoS One, San Francisco, v. 4, p. 1-5, 2009.

MARCHELLI, P.; GALLO, L. A. Annual and geographic variation in seed traits of Argentinean populations of southern beech Nothofagus nervosa (Phil.) Dim. et Mil. Forest Ecology and Management, Amsterdam, v. 121, p. 239-250, 1999.

MCKAY, J. K. et al. “How local is local?” - a review of practical and conceptual issues in the genetics of restoration. Restoration Ecology, Washington, v. 13, p. 432-440, 2005.

MCKENNEY, D.; PEDLAR, J.; O’NEILL, G. Climate change and forest seed zones: Past trends, future prospects and challenges to ponder. The Forestry Chronicle, Mattawa, v. 85, p. 258-266, 2009.

MIJANGOS, J. L. et al. Contribution of genetics to ecological restoration. Molecular Ecology, Malden, v. 24, p. 22-37, 2015.

MILLER, S. A. et al. Can an ecoregion serve as a seed transfer zone? Evidence from a common garden study with five native species. Restoration Ecology, Washington, v. 19, p. 268-276, 2011.

MITTELL, E. A.; NAKAGAWA, S.; HADFIELD, J. D. Are molecular markers useful predictors of adaptive potential? Ecology Letters, Malden, v. 18, p. 772-778, 2015.

MONTESINOS, D.; GARCIA-FAYOS, P.; VERDU, M. Relictual distribution reaches the top: elevation constrains´ fertility and leaf longevity in Juniperus thurifera. Acta Oecologica, Amsterdam, v. 36, p. 120-25, 2010.

NEWTON, A. C. Synthesis: principles and practice for forest landscape restoration. In: NEWTON, A. C.; TEJEDOR, N. (Ed.). Principles and practice of forest landscape restoration case studies from the Drylands of Latin America. Gland: IUCN, 2011. p. 353-383.

NICOTRA, A. B. et al. Plant phenotypic plasticity in a changing climate. Trends in Plant Science, Cambridge, v. 15, p. 684-692, 2010.

PARMESAN, C.; YOHE, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature, New York, v. 421, p. 37-42, 2003.

POTTER, K. M.; HARGROVE, W. W. Determining suitable locations for seed transfer under climate change: a global quantitative method. New Forests, Heidelberg, v. 43, p. 581-599, 2012.

PROBE, S. M. et al. Climate-adjusted provenancing: a strategy for climate-resilient ecological restoration. Frontiers in Ecology and Evolution, Washington, v. 3, p. 65, 2015.

ROGERS, D. L.; MONTALVO, A. M. Genetically appropriate choices for plant materials to maintain biological diversity. Report to the USDA Forest Service, Rocky Mountain Region, Lakewood, CO, USA. California: University of California, 2004. Available at: .

SAINT CLAIR, B. S. The development of forest tree seed zones in the Pacific Northwest of the United States. In: BOZZANO et al. (Ed.). Genetic considerations in ecosystem restoration using native tree species. State of the World’s Forest Genetic Resources – Thematic Study. Rome: FAO, 2014. p. 49-51.

SANZ, R.; PULIDO, F.; CAMARERO, J. Boreal trees in the Mediterranean: recruitment of downy birch (Betula alba) at its southern range limit. Annals of Forest Science, Paris, v. 68, p. 793-802, 2011.

SANZ, R.; PULIDO, F.; NOGUES-BRAVO, D. Predicting mechanisms across scales: amplified effects of abiotic´ constraints in the recruitment of yew Taxus baccata. Ecography, Lund, v. 32, p. 1-8, 2009.

SAVOLAINEN, O.; LASCOUX, M.; MERILÄ, J. Ecological genomics of local adaptation. Nature Reviews Genetics, London, v. 14, p. 807-820, 2013. SCHOENE, D. H. F.; BERNIER, P. Y. Adapting forestry and forests to climate change: a challenge to change the paradigm. Forest Policy and Economics, Göttingen, v. 24, p. 12-19, 2012.

SGRO, C. M.; LOWE, A. J.; HOFFMANN, A. A. Building evolutionary resilience for conserving biodiversity under climate change. Evolutionary Applications, Malden, v. 4, p. 326-337, 2014.

SOCIETY FOR ECOLOGICAL RESTORATION INTERNATIONAL. The SER International Primer on Ecological Restoration. Washington: Society for Ecological Restoration International, 2014. Available at: .

STANTURF, J. A.; PALIK, B. J.; DUMROESE, R. K. Contemporary forest restoration: a review emphasizing function. Forest Ecology and Management, Amsterdam, v. 331, p. 292-323, 2014.

TAÏBIA, K. et al. The effect of genotype by environment interaction, phenotypic plasticity and adaptation on Pinus halepensis reforestation establishment under expected climate drifts. Ecological Engineering, Naples, v. 84, p. 218-228, 2015.

THOMAS, E. et al. Genetic considerations in ecosystem restoration using native tree species. Forest Ecology and Management, Amsterdam, v. 333, p. 66-75, 2014.

VANDER MIJNSBRUGGE, K.; BISCHOFF, A.; SMITH, B. A question of origin: where and how to collect seed for ecological restoration. Basic Applied Ecology, Goettingen, v. 11, p. 300-311, 2010.

VOGEL, K. P.; SCHMER, M. R.; MITCHELL, R. B. Plant adaptation regions: ecological and climatic classification of plant materials. Rangeland Ecology and Management, Road Burns, v. 58, p. 315-319, 2005.

WEEKS, A. R. et al. Assessing the benefits and risks of translocations in changing environments: a genetic perspective. Evolutionary Applications, Malden v. 4, p. 709-725, 2011.

WILLIAMS, A. V.; NEVILL, P.; KRAUSS, S. L. Next generation restoration genetics: applications and opportunities. Trends in Plant Science, Cabridge, v. 19, p. 529-537, 2014.

WOODALL, C. W. et al. An indicator of tree migration in forests of the eastern United States. Forest Ecology and Management, Amsterdam, v. 257, p. 1434-1444, 2009.




DOI: https://doi.org/10.5902/1980509831628

Licença Creative Commons