PRODUÇÃO DE BIOMASSA E CONTEÚDO DE FENÓIS E FLAVONOIDES DE Schinus terebinthifolius CULTIVADA EM FILEIRA SIMPLES E DUPLA COM CAMA DE FRANGO

Luciane Almeri Tabaldi, Maria do Carmo Vieira, Néstor Antonio Heredia Zárate, Anelise Samara Nazari Formagio, Márcio Pilecco, Luan Ramos da Silva, Kerollainy Pereira dos Santos, Luiz Augusto Cauz dos Santos, Cláudia Andrea Lima Cardoso

Resumo


O objetivo deste estudo foi avaliar a influência da adição da cama de frango ao solo sobre o crescimento, produção de biomassa, conteúdo de fenóis e flavonoides e atividade antioxidante em folhas de pimenta-rosa. O experimento foi realizado na Universidade Federal da Grande Dourados, em Dourados-MS, de outubro de 2009 a maio de 2010. A pimenta-rosa foi cultivada em fileira simples e dupla com cama de frango incorporada nas doses de 0, 5, 10, 15 e 20 t ha-1. Os tratamentos foram arranjados em fatorial 2 x 5 em blocos casualizados com quatro repetições. Houve uma interação significativa entre doses de cama de frango e épocas de avaliação para altura de plantas e conteúdo de clorofila. Foi observado um aumento linear na área foliar, massa fresca e seca de folhas e diâmetro dos ramos principais com o aumento das doses de cama de frango. As plantas cultivadas em fileira simples apresentaram maior massa fresca de caules com o aumento das doses de cama de frango. A cama de frango nas doses de 15 e 20 t ha-1 promoveu um incremento no conteúdo de fenóis e flavonoides nas folhas. Nenhum efeito significativo na atividade antioxidante foi observado com o método químico utilizando DPPH. Portanto, recomenda-se o cultivo de plantas de pimenta-rosa em fileira dupla e 20 t ha-1 de cama de frango para maior crescimento, produção de biomassa, e conteúdo de fenóis e flavonoides.


Palavras-chave


resíduo orgânico; pimenta-rosa, densidade de plantas.

Texto completo:

PDF

Referências


ALVES, C.Q. et al. Métodos para determinação de atividade antioxidante in vitro em substratos orgânicos. Química Nova, São Paulo, v. 33, n. 10, p. 2202-2210, 2010.

BENNICK, A. Interaction of plant polyphenols with salivary proteins. Critical Reviews in Oral Biology & Medicine, Boca Raton, v. 13, p. 184-196, 2002.

BLOIS, M.S. Antioxidant determinations by the use of a stable free radical. Nature, New York, v. 181, p. 1199-1200, 1958.

BONSER, S.P.; AARSSEN, L.W. Allometry and development in herbaceous plants: functional responses of meristem allocation to light and nutrient availability. American Journal of Botany, St. Louis, v. 90, p. 404-412, 2003.

BRANDÃO, M.G.L. et al. Medicinal plants and other botanical products from the Brazilian official pharmacopoeia. Brazilian Journal of Pharmacognosy, Curitiba, v. 16, p. 408-420, 2006.

BRYANT, J.P. et al. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos, Rio de Janeiro, v. 40, p. 357-368, 1983.

BURDA, S.; OLESZEK, W. Antioxidant and anti- radical activities of flavonoids. Journal of Agricultural and Food Chemistry, California, v. 49, p. 2774-2779, 2001.

CAVALHER-MACHADO, S.C. et al. The anti-allergic activity of the acetate fraction of Schinus terebinthifolius leaves in IgE induced mice paw edema and pleurisy. International Immunopharmacology, Amsterdam, v. 8, p. 1552-1560, 2008.

CERUKS, M. et al. Constituintes fenólicos polares de Schinus terebinthifolius Raddi (Anacardiaceae). Química Nova, São Paulo, v. 30, n. 3, p. 597-599, 2007.

CORRÊA, M.P. Dicionário de plantas úteis do Brasil e das exóticas cultivadas, v. 3. Imprensa Nacional: Rio de Janeiro, p. 125-126, 1974.

DEGÁSPARI, C.H. et al. Atividade antimicrobiana de Schinus terebinthifolius Raddi. Ciência e Agrotecnologia, Lavras, v. 29, n. 3, p. 617-622, 2005.

DI STASI, L.C. et al. Medicinal plants popularly used in the Brazilian Tropical Atlantic Forest. Fitoterapia, Novara, v. 73, p. 69-91, 2002.

DONNELLY, M.J. et al. Allelopathic effects of fruits of the Brazilian Pepper Schinus terebinthifolius on growth, leaf production and biomass of seedlings of the red mangrove Rhizophora mangle and the black mangrove Avicennia germinans. Journal of Experimental Marine Biology and Ecology, Groton, v. 357, p. 149-156, 2008.

ENDALE, D.M. et al. Management implications of conservation tillage and poultry litter use for Southern Piedmont USA cropping systems. Nutrient Cycling in Agroecosystems, Bonn, v. 88, p. 299-313, 2010.

EWE, S.M.L.; STERNBERG, S.L. Seasonal water-use by the invasive exotic, Schinus terebinthifolius in native and disturbed communities. Oecology, Oxford, v. 133, p. 441-448, 2002.

GAZZANEO, J.R.S. et al. Knowledge and use of medicinal plants by local specialists in a region of Atlantic Forest in the state of Pernambuco (Northeastern Brazil). Journal of Ethnobiology and Ethnomedicine, London, v. 1, p. 9, 2005.

GUO, M.; SONG, W. Nutrient value of alum-treated poultry litter for land application. Poultry Science, Campinas, v. 88, p. 1782-1792, 2009.

JACKSON, J.E. Biology of apples and pears. Cambridge, UK: Cambridge University Press. 2003.

JOHANN, S. et al. Antifungal properties of plants used in Brazilian traditional medicine against clinically relevant fungal pathogens. Brazilian Journal of Microbiology, São Paulo, v. 38, n. 4, p. 632-637, 2007.

JONES, C.G.; HARTLEY, S.E. A protein competition model of phenolic allocation. Oikos, Rio de Janeiro, v. 86, p. 27-44, 1999.

KIEHL, E.J. Adubação orgânica - 500 perguntas e respostas. Piracicaba: Degaspari, 2008.

KUCHTA, G.M.M. Dietary flavonoids and risk of coronary heart disease. Physiology Research, Prague, v. 50, p. 529-535, 2001.

LIMA, L.B. et al. Acute and subacute toxicity of Schinus terebinthifolius bark extract. Journal of Ethnopharmacology, London, v. 126, p. 468-473, 2009.

LIN, J.Y.; TANG, C.Y. Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chemistry, Reading, v. 101, p. 140-147, 2007.

LIST, P.H.; HORHAMMER, L. Hager’s handbuch der pharmazeutischen praxis. v. 6. Springer-Verlag: Berlin. 1979.

MARCELIS, L.F.M. Sink strength as a determinant of dry matter partitioning in the whole plant. Journal of Experimental Botany, Paris, v. 47, p. 1281-1291, 1996.

MEDA, A. et al. Determination of the total phenolic, flavonoid and proline contents in burkina fasan honey, as well as their radical scavenging activity. Food Chemistry, Reading, v. 91, p. 571-577, 2005.

MEDEIROS, K.C.P. et al. Effect of the activity of the brazilian polyherbal formulation: Eucalyptus globulus Labill, Peltodon radicans Pohl and Schinus terebinthifolius Raddi in inflammatory models. Brazilian Journal of Pharmacognosy, Curitiba, v. 17, p. 23-28, 2007.

MELLO, S.C.; VITTI, G.C. Desenvolvimento do tomateiro e modificações nas propriedades químicas do solo em função da aplicação de resíduos sob cultivo protegido. Horticultura Brasileira, Campinas, v. 20, p. 200-206, 2002.

MULLINS, G.L.; BENDFELDT, E.S. Poultry litter as a fertilizer and soil amendment. Virginia Cooperative Extension, Blacksburg. 2001.

PIRES, O.C. et al. Análise preliminar da toxicidade aguda e dose letal mediana (DL50) comparativa entre os frutos de pimenta-do-reino do Brasil (Schinus terebinthifolius Raddi) e pimenta do reino (Piper nigrum L.). Latin American Journal of Pharmacy, Buenos Aires, v. 23, p. 176-182, 2004.

QAFOKU, O.S. et al. Rapid method to determine potentially mineralizable nitrogen in broiler litter. Journal of Environmental Quality, Madison, v. 30, p. 217-221, 2001.

RENISUS. National list of Medicinal Plants of interest to SUS. Plantas medicinais que apresentam potencial para gerar produtos de interesse ao SUS. Ministério da Saúde. Available on: http://portal.saude.gov.br/portal/arquivos/pdf/RENISUS.pdf. Access in July 2010.

RIBAS, M.D.O. et al. Efeito da Schinus terebinthifolius Raddi sobre o processo de reparo tecidual das lesões ulceradas induzidas na mucosa bucal do rato. Revista Odonto Ciência, Porto Alegre, v. 21, n. 53, p. 245-252, 2006.

RICHTER, R. et al. Spirocyclopropane-type sesquiterpene hydrocarbons from Schinus terebinthifolius Raddi. Phytochemistry, London, v. 71, p. 1371-1374, 2010.

SCHMITT, J. et al. The adaptive evolution of plasticity: phytochrome-mediated shade avoidance responses. Integrative and Comparative Biology, Oxford, v. 43, p. 459-469, 2003.

SISTANI, K.R. et al. Poultry litter and tillage influences on corn production and soil nutrients in a Kentucky silt loam soil. Soil & Tillage Research, Auburn, v. 98, p. 130-139, 2008.

SOLER-RIVAS, C. et al. An easy and fast test to compare total free radical scavenger capacity of foodstuffs. Phytochemical Analysis, Wolverhampton, v. 11, p. 330-338, 2000.

SOUTO, M.A.G.; BOEGER, M.R.T. Estrutura e composição do estrato de regeneração e vegetação associada de diferentes estádios sucessionais no leste do Paraná. Ciência Florestal, Santa Maria, v. 21, n. 3, p. 393-406, 2011.

TOMLINSON, P.J. et al. Phosphatase activities in soil after repeated untreated and alum-treated poultry litter applications. Biology and Fertility of Soils, Firenze, v. 44, p. 613-622, 2008.

WARREN, J.G. et al. A new method of poultry litter application to perennial pasture: subsurface banding. Soil Science Society of America Journal, Madison, v. 72, n. 6, p. 1831-1837, 2008.

WATERMAN, P.G.; MOLE, S. Extrinsic factors influencing production of secondary metabolites in plants. In: BERNAYS, E.A. (Ed), Insect-Plant Interactions, CRC Press: Boca Raton, v. 1, p. 107-134, 1989.

WEINER, J. Ecology – the science of agriculture in the 21st century. The Journal of Agricultural Science, Toronto, v. 141, p. 371-377, 2003.




DOI: https://doi.org/10.5902/1980509824207

Licença Creative Commons