Modelagem matemática da concentração de nanopartículas monodispersas em aerossóis sujeitos a campo elétrico usando a equação de Poisson–Nernst–Planck

Autores

DOI:

https://doi.org/10.5902/2179460X88532

Palavras-chave:

Modelo fenomenológico, Separação de nanopartículas, Campo elétrico, Problema inverso, Evolução Diferencial, Kriging

Resumo

Nas últimas décadas, o estudo de materiais particulados têm atraído a atenção da comunidade científica. Isto se deve as aplicações que podem ser desenvolvidas, entre as quais podemos citar os riscos a saúde humana e ao meio ambiente. Como consequência desta preocupação, a classificação das nanopartículas configura um tópico de grande interesse. Um dos dispositivos mais utilizados para a classificação de nanopartículas em aerossóis é o Analisador de Mobilidade Diferencial. Do ponto de vista matemático, os perfis de concentração de partículas têm sido obtidos considerando relações constitutivas. Nesta contribuição, a equação de Poisson–Nernst–Planck é empregada para determinar a concentração de nanopartículas monodispersas em aerossóis submetidos a um campo elétrico. Para esta finalidade, um problema inverso é proposto e resolvido considerando dados reais e o algoritmo de Evolução Diferencial como ferramenta de otimização. Os resultados obtidos demonstram que a metodologia proposta foi capaz de obter boas estimativas considerando o modelo fenomenológico em relação aos pontos experimentais, bem como, boas estimativas para perfis intermediários considerando Kriging. Finalmente, é importante mencionar que a novidade desta contribuição é a capacidade de predição da concentração de nanopartículas monodispersas em aerossóis submetidos a um campo elétrico usando a equação de Poisson–Nernst–Planck.

Downloads

Biografia do Autor

Fran Sérgio Lobato, Universidade Federal de Uberlândia

Doutor em Engenharia Mecânica.

João Jorge Ribeiro Damasceno, Universidade Federal de Uberlândia

Doutor em Engenharia Química.

Fabio de Oliveira Arouca, Universidade Federal de Uberlândia

Estágio de Pós-Doutorado (2009) no Laboratório de Controle Ambiental do DEQ/UFSCar. 

Referências

Cai, R., Chen, D. R., Hao, J., & Jiang, J. (2017). A miniature cylindrical differential mobility analyzer for sub-3 nm particle sizing. Journal of Aerosol Science, 4(106):111–119. DOI: https://doi.org/10.1016/j.jaerosci.2017.01.004

Camargo, E. C. M., Lobato, F. S., Damasceno, J. J. R., & Arouca, F. O. (2021). Experimental and numerical study of monodisperse nanoparticles concentration in a nano-differential mobility analyzer. Brazilian Journal of Chemical Engineering, 4(38):389–401. DOI: https://doi.org/10.1007/s43153-021-00105-6

Cartailler, J., Schuss, Z., & Holcman, D. (2017). Analysis of the poisson–nernst–planck equation in a ball for modeling the voltage–current relation in neurobiological microdomains. Physica D, 4(339):39–48. DOI: https://doi.org/10.1016/j.physd.2016.09.001

Dasgupta, D., Pal, P., Torelli, R., Som, S., Paulson, N., Libera, J., & Stan, M. (2022). Computational fluid dynamics modeling and analysis of silica nanoparticle synthesis in a flame spray pyrolysis reactor. Combustion and Flame, 5(236):111789–111895. DOI: https://doi.org/10.1016/j.combustflame.2021.111789

Datta, B. N. (2010). Numerical Linear Algebra and Applications. (2nd ed.). Society for Industrial and Applied Mathematics. DOI: https://doi.org/10.1137/1.9780898717655

Forrester, A. I. J., Sobester, A., & Keane, A. J. (2008). Engineering Design via Surrogate Modelling: A Practical Guide. John Wiley & Sons Ltd, West Sussex. DOI: https://doi.org/10.1002/9780470770801

Garcia, V. A., Finzi-Neto, R. M., Lobato, F. S., & Vieira, L. G. M. (2024). Reliability-based design of high-performance hydrocyclones: Multi-objective optimization, fabrication using 3d-printing and experimental analysis. Powder Technology, 4(435):119427–119440. DOI: https://doi.org/10.1016/j.powtec.2024.119427

Gaspar, B., Teixeira, A. P., & Soares, C. G. (2014). Assessment of the efficiency of kriging surrogate models for structural reliability analysis. Probabilistic Engineering Mechanics, 4(37):24–34. DOI: https://doi.org/10.1016/j.probengmech.2014.03.011

Gomes, T. L. C., Lobato, F. S., Borges, L. C., Damasceno, J. J. R., & Arouca, F. O. (2021). Mathematical modeling of monodisperse nanoparticle production in aerosols using separation in an electric field. Soft Computing, 5(25):11347–11362. DOI: https://doi.org/10.1007/s00500-021-05931-x

Gonzalez, D., Nasibulin, A. G., Jiang, H., & Queipo, P. (2007). Electrospraying of ferritin solutions for the production of monodisperse iron oxide nanoparticles. Chemical Engineering Communications, 5(194):901–912. DOI: https://doi.org/10.1080/00986440701215531

Hagwood, C., Sivathanu, Y., & Mulholland, G. (1999). The dma transfer function with brownian motion a trajectory/monte-carlo approach. Aerosol Science and Technology, 5(30):40–61. DOI: https://doi.org/10.1080/027868299304877

Hussein, R. & Deb, K. (2016). A generative kriging surrogate model for constrained and uncon-strained multi-objective optimization. In Friedrich, T. (ed.). Proceedings of the Genetic and Evolutionary Com-putation Conference (pp. 573-580). Association for Computing Machinery. DOI: https://doi.org/10.1145/2908812.2908866

Jaeger, K. H., Ivanovic, E., Kucera, J. P., & Tveito, A. (2023). Nano-scale solution of the poisson-nernst-planck (pnp) equations in a fraction of two neighboring cells reveals the magnitude of intercellular electrochemical waves. PLOS Computational Biology, 2(19):1–31. DOI: https://doi.org/10.1371/journal.pcbi.1010895

Ju, B. & Fan, T. (2009). Experimental study and mathematical model of nanoparticle transport in porous media. Powder Technology, 11(192):195–202. DOI: https://doi.org/10.1016/j.powtec.2008.12.017

Jubery, T. Z., Prabhu, A. S., Kim, M. J., & Dutta, P. (2012). Modeling and simulation of nanoparticle separation through a solid-state nanopore. Electrophoresis, 4(33):325–333. DOI: https://doi.org/10.1002/elps.201100201

Karlsson, M. N. A. & Martinsson, B. G. (2003). Methods to measure and predict the transfer function size dependence of individual dmas. Journal of Aerosol Science, 1(34):603–625. DOI: https://doi.org/10.1016/S0021-8502(03)00020-X

Kauffeldt, T., Kleinwechter, H., & Schmidt-Ott, A. (1995). Absolute on-line measurement of the magnetic moment of aerosol particles. Chemical Engineering Communications, 1(151):169–185. DOI: https://doi.org/10.1080/00986449608936547

Kievit, O., Weiss, M., Verheijen, P. J. T., Marijnissen, J. C. M., & Scarlett, B. (1995). The on-line chemical analysis of single particles using aerosol beams and time of flight mass spectrometry. Chemical Engineering Communications, 1(151):79–100. DOI: https://doi.org/10.1080/00986449608936543

Knight, M. & Petrucci, G. A. (2003). Study of residual particle concentrations generated by the ultrasonic nebulization of deionized water stored in different container types. Analytical Chemistry Journa, 5(75):4486–4492. DOI: https://doi.org/10.1021/ac034355n

Knutson, E. & Whitby, K. (1975). Aerosol classification by electric mobility: Apparatus, theory, and applications. Journal of Aerosol Science, 4(6):443–451. DOI: https://doi.org/10.1016/0021-8502(75)90060-9

Krige, D. (1951). A statistical approach to some basic nine valuation problems on the witwaters-rand. Journal of the Chemical, Metallurgical and Mining Engineering Society of South Affrica, 6(52):119–139.

Kumaran, M. & Bajpai, S. (2015). Application of extended nernst planck model in nano filtration process –a critical review. International Journal of Engineering Research and Reviews, 3(3):40–49.

Lee, H., You, S., Pikhitsa, P. V., Kim, J., Kwon, S., Woo, C. G., & Choi, M. (2011). Three-dimensional assembly of nanoparticles from charged aerosols. Nano Letters, 11(1):119–124. DOI: https://doi.org/10.1021/nl103787k

Lobato, F. S., Alamy-Filho, J. E., Libotte, G. B., & Platt, G. M. (2023). Optimizing breast cancer treatment using hyperthermia: a single and multi-objective optimal control approach. Applied Mathematical Modelling, 4(127):96–118. DOI: https://doi.org/10.1016/j.apm.2023.11.022

Lophaven, S. N., Nielsen, H. B., & Sondergaard, J. (2002). DACE - A MATLAB Kriging Toolbox. Version 2.0, Technical University of Denmark, DK-2800 Kgs. Lyngby – Denmark, 1st edition.

Lu, B., Holst, M. J., McCammond, J. A., & Zhou, Y. C. (2010). Poisson–nernst–planck equations for simulating biomolecular diffusion–reaction processes i: Finite element solutions. Journal of Computational Physics, 4(229):6979–6994. DOI: https://doi.org/10.1016/j.jcp.2010.05.035

Masliyah, J. H. & Bhattacharjee, S. (2006). Electrokinetic and Colloid Transport Phenomena. John Wiley & Sons. DOI: https://doi.org/10.1002/0471799742

Matheron, G. (1963). Principles of geostatistics. Economic Geology, 2(58):1246–1266. DOI: https://doi.org/10.2113/gsecongeo.58.8.1246

Paes, L. E. S., Andrade, J. R., Lobato, F. S., Santos, M. E., Ponomarov, V., Souza, F. J., & Vilarinho, L. O. (2022). Sensitivity analysis and multi-objective optimization of tungsten inert gas (tig) welding based on numerical simulation. International Journal of Advanced Manufacturing Technology, 3(1):1–15. DOI: https://doi.org/10.21203/rs.3.rs-1742278/v1

Ramechecandane, S., Beghein, C., Allard, F., & Bombardier, P. (2011). Modelling ultrafine/nano particle dispersion in two differential mobility analyzers (m-dma and l-dma). Building and Environment, 3(46):2255–2266. DOI: https://doi.org/10.1016/j.buildenv.2011.05.005

Sacks, J., Welch, W. J., Mitchell, T. J., & Wynn, H. P. (1989). Design and analysis of computer experiments. Statistical Science, 4(4):409–423. DOI: https://doi.org/10.1214/ss/1177012413

Salama, A., Negara, A., Amin, M. E., & Sun, S. (2015). Numerical investigation of nanoparticles transport in anisotropic porous media. Journal of Contaminant Hydrology, 5(181):114–130. DOI: https://doi.org/10.1016/j.jconhyd.2015.06.010

Schofer, S. (2013). Numerical Solution of the Poisson-Nernst-Planck Equation System. Friedrich-Alexander University of Erlangen-Nuremberg.

Seol, K. S., Yabumoto, J., & Takeuchi, K. (2002). A differential mobility analyzer with adjustable column length for wide particle-size range measurements. Journal of Aerosol Science, 3(33):1481–1492. DOI: https://doi.org/10.1016/S0021-8502(02)00094-0

Shi, J., Votruba, A. R., Farokhzad, O. C., & Langer, R. (2010). Nanotechnology in drug delivery and tissue engineering: From discovery to applications. Nano Letters Journal, 2(10):3223–3230. DOI: https://doi.org/10.1021/nl102184c

Shu, J., Wilson, K. R., Arrowsmith, A. N., Ahmed, M., & Leone, S. R. (2005). Light scattering of ultrafine silica particles by vuv synchrotron radiation. Nano Letters Journal, 6(5):1009–1015. DOI: https://doi.org/10.1021/nl050315i

Song, D. K., Lee, H. M., Chang, H., Kim, S. S., Shimada, M., & Okuyama, K. (2006). Performance evaluation of long differential mobility analyzer (ldma) in measurements of nanoparticles. Journal of Aerosol Science, 3(37):598–615. DOI: https://doi.org/10.1016/j.jaerosci.2005.06.003

Soysal, U., Gehin, E., Algre, E., Berthelot, B., Da, G., & Robine, E. (2017). Aerosol mass concentration measurements: Recent advancements of real-time nano/micro systems. Journal of Aerosol Science, 1(114):573–586. DOI: https://doi.org/10.1016/j.jaerosci.2017.09.008

Storn, R. & Price, K. (1997). Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(1):341–359. DOI: https://doi.org/10.1023/A:1008202821328

Whitby, K. T. & Clark, W. E. (1966). Electric aerosol particle counting and size distribution measuring system for the 0.05 to 1 um size range. Tellus, 18(1):573–586. DOI: https://doi.org/10.1111/j.2153-3490.1966.tb00272.x

Downloads

Publicado

2025-03-14

Como Citar

Lobato, F. S., Damasceno, J. J. R., & Arouca, F. de O. (2025). Modelagem matemática da concentração de nanopartículas monodispersas em aerossóis sujeitos a campo elétrico usando a equação de Poisson–Nernst–Planck. Ciência E Natura, 47, e88532. https://doi.org/10.5902/2179460X88532

Edição

Seção

Matemática