Uma revisão sistemática das tecnologias de hardware para carros autônomos de pequena escala

Autores

DOI:

https://doi.org/10.5902/2179460X84071

Palavras-chave:

Veículos autônomos, Veículos de pequena escala, Carros autônomos

Resumo

A tecnologia de veículos autônomos (AV) tem o potencial de revolucionar o setor de transporte e logística, tornando-o mais eficiente e seguro. No entanto, testar essas tecnologias geralmente é limitado por restrições de tempo, espaço e custo. Por isso, nos últimos anos, várias iniciativas surgiram para testar software e hardware autônomo em veículos em pequena escala. A fim de fornecer orientação para pesquisas futuras, esta revisão sistemática da literatura foi realizada para trazer uma visão geral da literatura sobre carros autônomos de pequena escala, resumindo as atuais plataformas autônomas implantadas e focando nos desenvolvimentos de hardware neste campo. Por meio do uso de bancos de dados como Web of Science, Scopus, Springer Link, Wiley, ACM Digital Library e TRID, 38 estudos elegíveis que apresentam testes em pequena escala de carros autônomos foram identificados e revisados. Os resultados indicaram que as publicações sobre o tema são relativamente novas, sendo que apenas nos últimos quatro anos houve aumento no número de publicações. Além disso, a maioria dos trabalhos apresentou apenas resultados preliminares, destacando o potencial para novas pesquisas e desenvolvimento no campo. Trabalhos de pesquisa são predominantemente focados em software em vez de hardware.

Downloads

Não há dados estatísticos.

Biografia do Autor

Felipe Caleffi, Universidade Federal de Santa Maria

He received the M.Sc. degree in Transport Systems Engineering and the Ph.D. degree from the Federal University of Rio Grande do Sul, Brazil, in 2013 and 2018, respectively. Since April 2019, he has been a Professor at the University of Santa Maria – Campus of Cachoeira do Sul, in the Transport and Logistics Engineering course. He did the Post-Doctoral Research also with the Federal University of Rio Grande do Sul.

Lauren da Silva Rodrigues, Universidade Federal de Santa Maria

She is currently pursuing the bachelor’s degree in architecture from the University of Santa Maria – Campus of Cachoeira do Sul, Brazil. She is currently under scholarship to work in in a project studying the connection of urban planning and autonomous vehicles.

Joice da Silva Stamboroski, Universidade Federal de Santa Maria

She is currently pursuing the bachelor’s degree in architecture from the University of Santa Maria – Campus of Cachoeira do Sul, Brazil. She is currently under scholarship to work in in a project studying the connection of urban planning and autonomous vehicles.

Braian Vargas Rorig, Universidade Federal de Santa Maria

He is currently pursuing the bachelor’s degree in Electrical engineering from the University of Santa Maria – Campus of Cachoeira do Sul, Brazil. He is currently under scholarship to work in in a project studying the connection of urban planning and autonomous vehicles.

Maria Manoela Cardoso dos Santos, Universidade Federal de Santa Maria

She is currently pursuing the bachelor’s degree in Logistics and Transportation engineering from the University of Santa Maria – Campus of Cachoeira do Sul, Brazil. She is currently under scholarship to work in in a project studying the connection of urban planning and autonomous vehicles.

Vanessa Zuchetto, Universidade Federal de Santa Maria

She is currently pursuing the bachelor’s degree in Logistics and Transportation engineering from the University of Santa Maria – Campus of Cachoeira do Sul, Brazil. She is currently under scholarship to work in in a project studying the connection of urban planning and autonomous vehicles.

Ítalo Brum Raguzzoni, Universidade Federal de Santa Maria

He is currently pursuing the bachelor’s degree in Logistics and Transportation engineering from the University of Santa Maria – Campus of Cachoeira do Sul, Brazil. He is currently under scholarship to work in in a project studying the connection of urban planning and autonomous vehicles.

 

Referências

AHN, H. et al. Experimental testing of a semi-autonomous multi-vehicle collision avoidance algorithm at an intersection testbed. In: IEEE International Conference on Intelligent Robots and Systems. [S. l.]: Institute of Electrical and Electronics Engineers Inc., 2015. p. 4834–4839. Disponível em: https://ieeexplore.ieee.org/document/7354056. Acesso em: 25 ago. 2022. DOI: https://doi.org/10.1109/IROS.2015.7354056

ALCALÁ, E. et al. Autonomous racing using Linear Parameter Varying-Model Predictive Control (LPV-MPC). Control Engineering Practice, [s. l.], v. 95, 2020. Disponível em: https://www.sciencedirect.com/science/article/pii/S0967066119302187?via%3Dihub. Acesso em: 25 ago. 2022. DOI: https://doi.org/10.1016/j.conengprac.2019.104270

ANDERT, E.; KHAYATIAN, M.; SHRIVASTAVA, A. Crossroads: Time-Sensitive Autonomous Intersection Management Technique. In: Proceedings - Design Automation Conference. [S. l.]: Institute of Electrical and Electronics Engineers Inc., 2017. Disponível em: https://dl.acm.org/doi/10.1145/3061639.3062221. Acesso em: 25 ago. 2022. DOI: https://doi.org/10.1145/3061639.3062221

ANINDYAGUNA, K.; BASJARUDDIN, N. C.; SAEFUDIN, D. Overtaking assistant system (OAS) with fuzzy logic method using camera sensor. In: 2016 2nd International Conference of Industrial, Mechanical, Electrical, and Chemical Engineering, ICIMECE 2016. [S. l.]: Institute of Electrical and Electronics Engineers Inc., 2016. p. 89–94. Disponível em: https://ieeexplore.ieee.org/document/7910420. Acesso em: 25 ago. 2022. DOI: https://doi.org/10.1109/ICIMECE.2016.7910420

BAE, I. et al. Path generation and tracking based on a Bézier curve for a steering rate controller of autonomous vehicles. In: IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC. [S. l.: s. n.], 2013. p. 436–441. Disponível em: https://ieeexplore.ieee.org/document/6728270. Acesso em: 25 ago. 2022. DOI: https://doi.org/10.1109/ITSC.2013.6728270

BAHNIK, M. et al. Visually Assisted Anti-lock Braking System. In: IEEE Intelligent Vehicles Symposium, Proceedings. [S. l.]: Institute of Electrical and Electronics Engineers Inc., 2020. p. 1219–1225. Disponível em: https://ieeexplore.ieee.org/document/9304807. Acesso em: 25 ago. 2022. DOI: https://doi.org/10.1109/IV47402.2020.9304807

BALAJI, B. et al. DeepRacer: Autonomous Racing Platform for Experimentation with Sim2Real Reinforcement Learning. Proceedings - IEEE International Conference on Robotics and Automation, [s. l.], p. 2746–2754, 2020. Disponível em: https://ieeexplore.ieee.org/document/9197465. Acesso em: 25 ago. 2022. DOI: https://doi.org/10.1109/ICRA40945.2020.9197465

BAUR, M.; BASCETTA, L. An experimentally validated LQR approach to autonomous drifting stabilization. In: 18th European Control Conference, ECC 2019. [S. l.]: Institute of Electrical and Electronics Engineers Inc., 2019. p. 732–737. Disponível em: https://ieeexplore.ieee.org/document/8795883. Acesso em: 25 ago. 2022. DOI: https://doi.org/10.23919/ECC.2019.8795883

BERNTORP, K. et al. Control Architecture Design for Autonomous Vehicles. In: 2018 IEEE Conference on Control Technology and Applications (CCTA). [S. l.: s. n.], 2018. p. 404–411. Disponível em: https://ieeexplore.ieee.org/document/8511371, Acesso em: 25 ago. 2022. DOI: https://doi.org/10.1109/CCTA.2018.8511371

BETZ, J. et al. Autonomous Vehicles on the Edge: A Survey on Autonomous Vehicle Racing. IEEE Open Journal of Intelligent Transportation Systems, [s. l.], v. 3, p. 458–488, 2022. Disponível em: https://arxiv.org/abs/2202.07008. Acesso em: 25 ago. 2022. DOI: https://doi.org/10.1109/OJITS.2022.3181510

BRYAN, W. T.; BOLER, M. E.; BEVLY, D. M. A Vehicle-Independent Autonomous Lane Keeping and Path Tracking System. In: IFAC-PapersOnLine. [S. l.]: Elsevier B.V., 2021. p. 37–44. DOI: https://doi.org/10.1016/j.ifacol.2021.06.006

CAI, P. et al. Vision-Based Autonomous Car Racing Using Deep Imitative Reinforcement Learning. IEEE Robotics and Automation Letters, [s. l.], v. 6, n. 4, p. 7262–7269, 2021. Disponível em: https://ieeexplore.ieee.org/document/9488179. Acesso em: 25 ago. 2022. DOI: https://doi.org/10.1109/LRA.2021.3097345

CARRAU, J. V. et al. Efficient implementation of Randomized MPC for miniature race cars. In: 2016 European Control Conference, ECC 2016. [S. l.]: Institute of Electrical and Electronics Engineers Inc., 2016. p. 957–962. Disponível em: https://ieeexplore.ieee.org/document/7810413. Acesso em: 25 ago. 2022. DOI: https://doi.org/10.1109/ECC.2016.7810413

CHOWDHURI, S.; PANKAJ, T.; ZIPSER, K. MultiNet: Multi-modal multi-task learning for autonomous driving. Em: Proceedings - 2019 IEEE Winter Conference on Applications of Computer Vision, WACV 2019. [S. l.]: Institute of Electrical and Electronics Engineers Inc., 2019. p. 1496–1504. Disponível em: https://ieeexplore.ieee.org/document/8658798. Acesso em: 25 ago. 2022. DOI: https://doi.org/10.1109/WACV.2019.00164

DAILY, M. et al. Self-Driving Cars. Computer, [s. l.], v. 50, n. 12, p. 18–23, 2017. Disponível em: https://ieeexplore.ieee.org/document/8220479. Acesso em: 25 ago. 2022. DOI: https://doi.org/10.1109/MC.2017.4451204

DO, T.-D. et al. Real-Time Self-Driving Car Navigation Using Deep Neural Network. In: 2018 4th International Conference on Green Technology and Sustainable Development (GTSD). [S. l.]: IEEE, 2018. p. 7–12. Disponível em: https://ieeexplore.ieee.org/document/8595590. Acesso em: 25 ago. 2022. DOI: https://doi.org/10.1109/GTSD.2018.8595590

DREWS, P. et al. Vision-based high-speed driving with a deep dynamic observer. IEEE Robotics and Automation Letters, [s. l.], v. 4, n. 2, p. 1564–1571, 2019. Disponível em: https://ieeexplore.ieee.org/document/8630018. Acesso em: 26 ago. 2022. DOI: https://doi.org/10.1109/LRA.2019.2896449

FAGNANT, D. J.; KOCKELMAN, K. Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations. Transportation Research Part A: Policy and Practice, [s. l.], v. 77, p. 167–181, 2015. Disponível em: https://www.sciencedirect.com/science/article/pii/S0965856415000804?via%3Dihub. Acesso em: 25 ago. 2022. DOI: https://doi.org/10.1016/j.tra.2015.04.003

GOLDFAIN, B. et al. AutoRally: An Open Platform for Aggressive Autonomous Driving. IEEE Control Systems, [s. l.], v. 39, n. 1, p. 26–55, 2019. Disponível em: https://arxiv.org/abs/1806.00678. Acesso em: 25 ago. 2022. DOI: https://doi.org/10.1109/MCS.2018.2876958

HAMZAH, M. S. et al. Development of Single-board Computer-based Self-Driving Car Model using CNN-Controlled RC Car. In: Proceedings of the International Conference on Electronics and Renewable Systems, ICEARS 2022. [S. l.]: Institute of Electrical and Electronics Engineers Inc., 2022. p. 1805–1812. DOI: https://doi.org/10.1109/ICEARS53579.2022.9751873

HOSSAIN, S. et al. Deep Reinforcement Learning-based ROS-Controlled RC Car for Autonomous Path Exploration in the Unknown Environment. In: International Conference on Control, Automation and Systems. [S. l.]: IEEE Computer Society, 2020. p. 1231–1236. Disponível em: https://ieeexplore.ieee.org/document/9268370. Acesso em: 25 ago. 2022. DOI: https://doi.org/10.23919/ICCAS50221.2020.9268370

HU, Y.; CHEN, H. M.; DELBRUCK, T. Slasher: Stadium racer car for event cameraend-to-end learning autonomous driving experiments. In: 2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS). [S. l.: s. n.], 2019. p. 29–33. Disponível em: https://www.zora.uzh.ch/id/eprint/184202/. Acesso em: 25 ago. 2022. DOI: https://doi.org/10.1109/AICAS.2019.8771520

HUSSAIN, R.; ZEADALLY, S. Autonomous Cars: Research Results, Issues, and Future Challenges. IEEE Communications Surveys and Tutorials, [s. l.], v. 21, n. 2, p. 1275–1313, 2019. Disponível em: https://ieeexplore.ieee.org/document/8457076. Acesso em: 25 ago. 2022. DOI: https://doi.org/10.1109/COMST.2018.2869360

HYLDMAR, N.; HE, Y.; PROROK, A. A Fleet of Miniature Cars for Experiments in Cooperative Driving. In: 2019 International Conference on Robotics and Automation (ICRA). [S. l.: s. n.], 2019. p. 3238–3244. Disponível em: https://ieeexplore.ieee.org/document/8794445. Acesso em: 25 ago. 2022. DOI: https://doi.org/10.1109/ICRA.2019.8794445

IVANOV, R. et al. Case study: Verifying the safety of an autonomous racing car with a neural network controller. In: HSCC 2020 - Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control, part of CPS-IoT Week. [S. l.]: Association for Computing Machinery, Inc, 2020. Disponível em: https://arxiv.org/abs/1910.11309. Acesso em: 25 ago. 2022. DOI: https://doi.org/10.1145/3365365.3382216

JAHODA, P.; CECH, J.; MATAS, J. Autonomous Car Chasing. In: 16th European Conference on Computer Vision, ECCV 2020. [S. l.: s. n.], 2020. p. 337–352. Disponível em: https://cmp.felk.cvut.cz/ftp/articles/cech/Jahoda-ECCVw-2020.pdf. Acesso em: 25 ago. 2022. DOI: https://doi.org/10.1007/978-3-030-66823-5_20

KANNAPIRAN, S.; BERMAN, S. Go-CHART: A miniature remotely accessible self-driving car robot. In: IEEE International Conference on Intelligent Robots and Systems. [S. l.]: Institute of Electrical and Electronics Engineers Inc., 2020. p. 2265–2272. Disponível em: https://ieeexplore.ieee.org/document/9341770. Acesso em: 25 ago. 2022. DOI: https://doi.org/10.1109/IROS45743.2020.9341770

KITCHENHAM, B.; CHARTERS, S. Guidelines for performing Systematic Literature Reviews in Software Engineering. Version 2.3. Technical Report EBSE-2007-01, Keele University, U.K., University of Durham, Durham, U.K., 2007.

KLAPALEK, J. et al. Car Racing Line Optimization with Genetic Algorithm using Approximate Homeomorphism. In: IEEE International Conference on Intelligent Robots and Systems. [S. l.]: Institute of Electrical and Electronics Engineers Inc., 2021. p. 601–607. Disponível em: https://ieeexplore.ieee.org/document/9636503. Acesso em: 25 ago. 2022. DOI: https://doi.org/10.1109/IROS51168.2021.9636503

KLOESER, D. et al. NMPC for racing using a singularity-free path-parametric model with obstacle avoidance. In: IFAC-PapersOnLine. [S. l.]: Elsevier B.V., 2020. p. 14324–14329. Disponível em: https://www.sciencedirect.com/science/article/pii/S2405896320317845?via%3Dihub. Acesso em: 27 ago. 2022. DOI: https://doi.org/10.1016/j.ifacol.2020.12.1376

LA, H. M. et al. Development of a small-scale research platform for intelligent transportation systems. IEEE Transactions on Intelligent Transportation Systems, [s. l.], v. 13, n. 4, p. 1753–1762, 2012. Disponível em: https://ieeexplore.ieee.org/document/6248708. Acesso em: 25 ago. 2022. DOI: https://doi.org/10.1109/TITS.2012.2207454

LAVALLE, S. M. Planning Algorithms. [S. l.]: Cambridge University Press, 2006. doi: 10.1017/CBO9780511546877 DOI: https://doi.org/10.1017/CBO9780511546877

LINIGER, A.; LYGEROS, J. Real-Time Control for Autonomous Racing Based on Viability Theory. IEEE Transactions on Control Systems Technology, [s. l.], v. 27, n. 2, p. 464–478, 2019. Disponível em: https://arxiv.org/abs/1701.08735. Acesso em: 25 ago. 2022. DOI: https://doi.org/10.1109/TCST.2017.2772903

LU, Y. et al. A survey on vision-based UAV navigation. Geo-Spatial Information Science, [s. l.], v. 21, n. 1, p. 21–32, 2018. Disponível em: https://www.tandfonline.com/doi/full/10.1080/10095020.2017.1420509. Acesso em: 25 ago. 2022. DOI: https://doi.org/10.1080/10095020.2017.1420509

MOURÃO, E. et al. On the performance of hybrid search strategies for systematic literature reviews in software engineering. Information and Software Technology, [s. l.], v. 123, 2020. Disponível em: https://arxiv.org/abs/2004.09741. Acesso em: 27 ago. 2022. DOI: https://doi.org/10.1016/j.infsof.2020.106294

MOZAFFARI, S. et al. Deep Learning-Based Vehicle Behavior Prediction for Autonomous Driving Applications: A Review. IEEE Transactions on Intelligent Transportation Systems, [s. l.], v. 23, n. 1, p. 33–47, 2022. Disponível em: https://ieeexplore.ieee.org/document/9158529. Acesso em: 25 ago. 2022. DOI: https://doi.org/10.1109/TITS.2020.3012034

MURALEEDHARAN, A.; OKUDA, H.; SUZUKI, T. Real-Time Implementation of Randomized Model Predictive Control for Autonomous Driving. IEEE Transactions on Intelligent Vehicles, [s. l.], v. 7, n. 1, p. 11–20, 2022. Disponível em: https://ieeexplore.ieee.org/document/9366366. Acesso em: 26 ago. 2022. DOI: https://doi.org/10.1109/TIV.2021.3062730

O’KELLY, M. et al. F1/10: An Open-Source Autonomous Cyber-Physical Platform. [s. l.], 2019. Disponível em: http://arxiv.org/abs/1901.08567. Acesso em: 26 ago. 2022.

O’KELLY, M. et al. F1TENTH: An Open-source Evaluation Environment for Continuous Control and Reinforcement Learning. Machine Learning Research, [s. l.], v. 123, p. 77–89, 2020a. Disponível em: http://proceedings.mlr.press/v123/o-kelly20a.html. Acesso em: 25 ago. 2022.

O’KELLY, M. et al. TUNERCAR: A Superoptimization Toolchain for Autonomous Racing. In: 2020 IEEE International Conference on Robotics and Automation (ICRA). [S. l.: s. n.], 2020b. p. 5356–5362. Disponível em: https://ieeexplore.ieee.org/document/9197080. Acesso em: 25 ago. 2022. DOI: https://doi.org/10.1109/ICRA40945.2020.9197080

PAGOT, E.; PICCININI, M.; BIRAL, F. Real-time optimal control of an autonomous RC car with minimum-time maneuvers and a novel kineto-dynamical model. In: IEEE International Conference on Intelligent Robots and Systems. [S. l.]: Institute of Electrical and Electronics Engineers Inc., 2020. p. 2390–2396. Disponível em: https://ieeexplore.ieee.org/document/9340640. Acesso em: 25 ago. 2022. DOI: https://doi.org/10.1109/IROS45743.2020.9340640

PENDLETON, S. D. et al. Perception, planning, control, and coordination for autonomous vehicles. Machines, [s. l.], v. 5, n. 1, 2017. Disponível em: https://www.mdpi.com/2075-1702/5/1/6. Acesso em: 25 ago. 2022. DOI: https://doi.org/10.3390/machines5010006

PETERSEN, K. et al. Systematic Mapping Studies in Software Engineering. Proceedings of the 12th international conference on Evaluation and Assessment in Software Engineering, [s. l.], p. 68–77, 2008. Disponível em: https://www.scienceopen.com/hosted-document?doi=10.14236/ewic/EASE2008.8. Acesso em: 27 ago. 2022.

RIBEIRO, A. M. et al. A comprehensive experimental validation of a scaled car-like vehicle: Lateral dynamics identification, stability analysis, and control application. Control Engineering Practice, [s. l.], v. 116, 2021. Disponível em: https://www.sciencedirect.com/science/article/pii/S096706612100201X?via%3Dihub. Acesso em: 25 ago. 2022. DOI: https://doi.org/10.1016/j.conengprac.2021.104924

ROSIQUE, F. et al. A systematic review of perception system and simulators for autonomous vehicles research. [S. l.]: MDPI AG, 2019. Disponível em: https://www.mdpi.com/1424-8220/19/3/648. Acesso em: 26 ago. 2022. DOI: https://doi.org/10.3390/s19030648

ROSOLIA, U.; BORRELLI, F. Learning How to Autonomously Race a Car: A Predictive Control Approach. IEEE Transactions on Control Systems Technology, [s. l.], v. 28, n. 6, p. 2713–2719, 2020. Disponível em: https://ieeexplore.ieee.org/document/8896988. Acesso em: 27 ago. 2022. DOI: https://doi.org/10.1109/TCST.2019.2948135

SAM, D.; VELANGANNI, C.; EVANGELIN, T. E. A vehicle control system using a time synchronized Hybrid VANET to reduce road accidents caused by human error. Vehicular Communications, [s. l.], v. 6, p. 17–28, 2016. doi: 10.1016/j.vehcom.2016.11.001 DOI: https://doi.org/10.1016/j.vehcom.2016.11.001

SEITZ, S. M. et al. A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Volume 1 (CVPR’06). [S. l.]: IEEE, 2006. p. 519–528. Disponível em: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1640800. Acesso em: 25 ago. 2022. DOI: https://doi.org/10.1109/CVPR.2006.19

SINHA, A. et al. FormulaZero: Distributionally Robust Online Adaptation via Offline Population Synthesis. Em: Proceedings of the 37th International Conference on Machine Learning, PMLR. 119:8992-9004. [S. l.: s. n.], 2020. Disponível em: https://arxiv.org/abs/2003.03900. Acesso em: 27 ago. 2022.

SRINIVASA, S. S. et al. MuSHR: A Low-Cost, Open-Source Robotic Racecar for Education and Research. [s. l.], 2019. Disponível em: https://arxiv.org/abs/1908.08031. Acesso em: 25 ago. 2022.

VASCONCELOS FILHO, E. et al. Towards a Cooperative Robotic Platooning Testbed. In: 2020 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC). [S. l.: s. n.], 2020. p. 332–337. Disponível em: https://ieeexplore.ieee.org/document/9096132. Acesso em: 25 ago. 2022. DOI: https://doi.org/10.1109/ICARSC49921.2020.9096132

VEDDER, B.; VINTER, J.; JONSSON, M. A Low-Cost Model Vehicle Testbed with Accurate Positioning for Autonomous Driving. Journal of Robotics, [s. l.], v. 2018, 2018. Disponível em: https://www.hindawi.com/journals/jr/2018/4907536/. Acesso em: 26 ago. 2022. DOI: https://doi.org/10.1155/2018/4907536

VERMA, A. et al. Implementation and Validation of Behavior Cloning using Scaled Vehicles. In: SAE Technical Papers 2021. [S. l.: s. n.], 2021. Disponível em: https://saemobilus.sae.org/content/2021-01-0248/. Acesso em: 25 ago. 2022.

WAGENER, N. et al. An Online Learning Approach to Model Predictive Control. In: Robotics: Science and Systems 2019. [S. l.: s. n.], 2019. Disponível em: https://arxiv.org/abs/1902.08967. Acesso em: 28 ago. 2022.

WANG, M. et al. Game-Theoretic Planning for Self-Driving Cars in Multivehicle Competitive Scenarios. IEEE TRANSACTIONS ON ROBOTICS, [s. l.], v. 37, n. 4, p. 1313, 2021. Disponível em: https://ieeexplore.ieee.org/document/9329208. Acesso em: 25 ago. 2022. DOI: https://doi.org/10.1109/TRO.2020.3047521

WHO. Global status report on road safety 2018: summary. World Health Organization, 2018 (WHO/NMH/NVI/18.20). Licence: CC BY-NC-SA 3.0 IGO). Geneva, Switzerland, 2018.

WILLIAMS, G. et al. Aggressive driving with model predictive path integral control. In: Proceedings - IEEE International Conference on Robotics and Automation. [S. l.]: Institute of Electrical and Electronics Engineers Inc., 2016. p. 1433–1440. Disponível em: https://ieeexplore.ieee.org/document/7487277. Acesso em: 26 ago. 2022. DOI: https://doi.org/10.1109/ICRA.2016.7487277

WILLIAMS, G. et al. Best Response Model Predictive Control for Agile Interactions between Autonomous Ground Vehicles. In: Proceedings - IEEE International Conference on Robotics and Automation. [S. l.]: Institute of Electrical and Electronics Engineers Inc., 2018. p. 2403–2410. Disponível em: https://ieeexplore.ieee.org/document/8462831. Acesso em: 25 ago. 2022. DOI: https://doi.org/10.1109/ICRA.2018.8462831

XU, Z. et al. What drives people to accept automated vehicles? Findings from a field experiment. Transportation Research Part C: Emerging Technologies, [s. l.], v. 95, p. 320–334, 2018. Disponível em: https://www.sciencedirect.com/science/article/pii/S0968090X18302316?via%3Dihub. Acesso em: 25 ago. 2022. DOI: https://doi.org/10.1016/j.trc.2018.07.024

YOU, C.; TSIOTRAS, P. High-Speed Cornering for Autonomous Off-Road Rally Racing. IEEE Transactions on Control Systems Technology, [s. l.], v. 29, n. 2, p. 485–501, 2021. Disponível em: https://ieeexplore.ieee.org/document/8910615. Acesso em: 27 ago. 2022. DOI: https://doi.org/10.1109/TCST.2019.2950354

ZHANG, T. et al. The roles of initial trust and perceived risk in public’s acceptance of automated vehicles. Transportation Research Part C: Emerging Technologies, [s. l.], v. 98, p. 207–220, 2019. Disponível em: https://www.sciencedirect.com/science/article/pii/S0968090X18308398?via%3Dihub. Acesso em: 25 ago. 2022. DOI: https://doi.org/10.1016/j.trc.2018.11.018

Downloads

Publicado

2023-10-02

Como Citar

Caleffi, F., Rodrigues, L. da S., Stamboroski, J. da S., Rorig, B. V., Santos, M. M. C. dos, Zuchetto, V., & Raguzzoni, Ítalo B. (2023). Uma revisão sistemática das tecnologias de hardware para carros autônomos de pequena escala. Ciência E Natura, 45(esp. 1), 84071. https://doi.org/10.5902/2179460X84071

Artigos mais lidos pelo mesmo(s) autor(es)