Impacto das mudanças climáticas na composição da uva: uma revisão
DOI:
https://doi.org/10.5902/2179460X75359Palavras-chave:
Vinhedo, Compostos fenólicos, Composição físico-química, Aquecimento global, VitiviniculturaResumo
Objetivou-se com o presente estudo, elaborar uma revisão de literatura com as principais implicações das mudanças climáticas na composição da uva e do vinho. Foi realizada uma revisão de literatura com artigos, livros e outros materiais científicos disponíveis em bases de dados da internet termos de indexação. Uma revisão sistemática da literatura foi adotada para preparar esta revisão. Inicialmente foi formulada a questão para o desenvolvimento da pesquisa. Logo após e definida a estratégia de busca, iniciou-se a busca de manuscritos relacionados ao assunto nas bases de dados. Os manuscritos foram selecionados por sua relevância e relação com o assunto chave desta revisão. Resultados inferiram que, os problemas ocasionados pelo efeito estufa não só em âmbito global, mas também em níveis regional e local são preocupantes para o setor agrícola. No Brasil, as projeções para o final do século indicam aumento de aproximadamente 2°C na temperatura, e a videira é uma cultura altamente influenciada pelo clima, considerado fator de suma importância para o seu desenvolvimento, produtividade e qualidade do vinhedo. Estudos apontaram que, as mudanças climáticas provocam alterações na temperatura, radiação solar, água, CO2, comprometendo consequentemente a composição de açúcares, ácidos orgânicos, compostos fenólicos e compostos aromáticos da uva e do vinho. Conclui-se que, os agravos ocasionados pelas mudanças climáticas tanto na composição da uva quanto do vinho são preocupantes, pois podem gerar grandes prejuízos para os produtores e vinhedos. No entanto, são necessários mais estudos e pesquisas propondo estratégias que possam minimizar os efeitos das implicações climáticas.
Downloads
Referências
Afifi, M., Obenland, D., & El-Kereamy, A. (2021). The Complexity of Modulating Antho-cyanin Biosynthesis Pathway by Deficit Irrigation in Table Grapes. Front. Plant Sci., 12, 1–19. DOI: https://doi.org/10.3389/fpls.2021.713277
Alem, H., Ojeda, H., Rigou, P., Schneider, R., & Torregrosa, L. (2021). The reduction of plant sink/source does not systematically improve the metabolic composition of Vitis vinifera white fruit. Food Chemistry, 345, 128825. DOI: https://doi.org/10.1016/j.foodchem.2020.128825
Assad, E. D., Martins, S.C., Beltrão, N.E.M., & Pinto, H.S. (2013). Impacts of climate change on the agricultural zoning of climate risk for DOI: https://doi.org/10.1590/S0100-204X2013000100001
cotton cultivation in Brazil. Pesq. agropec. Bras., 48(1), 1–8.
Arrizabalaga-Arriazu, M., Gomès, E., Morales, F., Irigoyen, J.J., Pascual, I., & Hilbert, G. (2020) High Temperature and Elevated Carbon Dioxide Modify Berry Composi-tion of Different Clones of Grapevine (Vitis vinifera L.) cv. Tempranillo. Front. Plant Sci. 11:603687. DOI: https://doi.org/10.3389/fpls.2020.603687
Ayenew, B., Degu, A., Manela, N., Perl, A., Shamir, M.O., & Fait, A. (2015). Metabolite profiling and transcript analysis reveal specificities in the response of a berry derived cell culture to abiotic stresses. Front. Plant Sci., 6, 1–14. DOI: https://doi.org/10.3389/fpls.2015.00728
Blanco-Ward, D., Ribeiro, A., Barreales, D., Castro, J., Verdial, J., Feliciano, M., Viceto, C. Rocha, A., Carlos, C., Silveira, C., Miranda, A. (2019). Climate change potential ef-fects on grapevine bioclimatic indices: A case study for the Portuguese demar-cated Douro Region (Portugal). BIO Web Conf, 12, 01013. DOI: https://doi.org/10.1051/bioconf/20191201013
Bonada, M., Edwards, E.J., McCarthy, M.G., Sepúlveda, G.C., Petrie, P.R. (2020). Impact of Low Rainfall during Dormancy on Vine Productivity and Development. Aust. J. Grape Wine Res., 26, 325–342. DOI: https://doi.org/10.1111/ajgw.12445
Carreiras, J., Cruz-Silva, A., Fonseca, B., Carvalho, R.C., Cunha, J.P., Proença Pereira, J., Paiva-Silva, C., A. Santos, S., Janeiro Sequeira, R., Mateos-Naranjo, E., Rodríguez-Llorente, I.D., Pajuelo, E., Redondo-Gómez, S., Matos, A.R., Mesa-Marín, J., Figuei-redo, A., Duarte, B.
(2023). Improving grapevine heat stress resilience with marine plant growth-promoting rhizobacteria consortia. Microorganisms, 11, 856. DOI: https://doi.org/10.3390/microorganisms11040856
Cera, J. C., & Ferraz, S. E. T. (2015). Variações climáticas na precipitação no sul do Bra-sil no clima presente e futuro. Revista Brasileira de Meteorologia, 30 (1), 81–88. DOI: https://doi.org/10.1590/0102-778620130588
Costa, J.M., Vaz, M., Escalona, J., Egipto, R., Lopes, C., Medrano, H., & Chaves, M.M. (2016). Modern viticulture in southern Europe: Vulnerabilities and strategies for adaptation to water scarcity. Agricultural Water Management, 164 (1), 5-18. DOI: https://doi.org/10.1016/j.agwat.2015.08.021
Dai, A., Zhao, T., & Chen, J. (2018). Climate change and drought: a precipitation and evaporation perspective. Current Climate Change Reports, 4, 301-312. DOI: https://doi.org/10.1007/s40641-018-0101-6
Droulia, F., & Charalampopoulos, I. (2022). A review on the observed climate change in europe and its impacts on viticulture. Atmos., 13(5), 837. DOI: https://doi.org/10.3390/atmos13050837
Durand, M., Mainson, D., Porcheron, B., Maurousset, L., Lemoine, R.,& Pourtau, N. (2018). Carbon source–sink relationship in Arabidopsis thaliana: the role of su-crose transporters. Planta, 247(3), 587–611. DOI: https://doi.org/10.1007/s00425-017-2807-4
Ferrero-del-Teso, S., Suárez, A., Jeffery, D.W., Ferreira, V., Fernández-Zurbano, P., & Sáenz-Navajas, M.P. (2020). Sensory variability associated with anthocyanic and tannic fractions isolated from red wines. Food Res. Int.,136,109340. DOI: https://doi.org/10.1016/j.foodres.2020.109340
Fonseca, A., Fraga, H., & Santos, J.A. (2023). Exposure of Portuguese viticulture to weather extremes under climate change. Climate Services, 30, 100357. DOI: https://doi.org/10.1016/j.cliser.2023.100357
Fraga, H., Molitor, D., Leolini, L., & Santos, J.A. (2020). What Is the Impact of Heatwaves on European Viticulture? A Modelling Assessment. Appl. Sci., 10, 3030. DOI: https://doi.org/10.3390/app10093030
Fraga, H., & Santos, J.A. (2018). Vineyard mulching as a climate change adaptation measure: Future simulations for Alentejo, Portugal. Agricultural Systems, 164, 107-115. DOI: https://doi.org/10.1016/j.agsy.2018.04.006
Fraga, H., Atauri, I.G.C., Malheiro, A.C., & Santos, J.A. (2016). Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe. Global Change Biology, 22(11), 3774–3788. DOI: https://doi.org/10.1111/gcb.13382
Galvão, T.F., & Pereira, M.G. (2014). Systematic reviews of the literature: steps for preparation. Epidemiol. Serv. Saúde, 23(1), 183-184. DOI: https://doi.org/10.5123/S1679-49742014000100018
Gambetta, J. M., Holzapfel. B.R., Stoll, M., & Friedel, M. (2021). Sunburn in Grapes: A Review. Front. Plant Sci., 11, 1-21. DOI: https://doi.org/10.3389/fpls.2020.604691
Garrido, J., & Borges, F. (2013). Wine and grape polyphenols — A chemical perspec-tive. Food Research International, 54(2), 1844–1858. DOI: https://doi.org/10.1016/j.foodres.2013.08.002
Gashu, K., Persi, N.S., Drori, E., Harcavi, E., Agam, N., Bustan, A., & Fait, A. (2020). Tem-perature Shift Between Vineyards Modulates
Berry Phenology and Primary Me-tabolism in a Varietal Collection of Wine Grapevine. Front. Plant Sci., 11, 1–23.
Giampieri, F., Forbes-Hernandez, T.Y., Gasparrini, M., Alvarez-Suarez, J.M., Afrin, S., Bompadre, S., Quiles, J.L., Mezzetti, B., & Battino, M. (2015). Strawberry as a health promoter: an evidence based review. Food & Function, 6(5), 1386–1398. DOI: https://doi.org/10.1039/C5FO00147A
Gouot, J. C., Smith, J.P., Holzapfel, B.P., & Barril, C. (2019). Grape Berry Flavonoid Re-sponses to High Bunch Temperatures Post Véraison: Effect of Intensity and Du-ration of Exposure. Molecules, 24(23), 4341. DOI: https://doi.org/10.3390/molecules24234341
Griesser, M., Weingart, G., Schoedl-Hummel, K., Neumann, N., Varmuza, K., Liebner, F., Schuhmacher, R., & Forneck, A. (2015). Severe drought stress is affecting se-lected primary metabolites, polyphenols, and volatile metabolites in grapevine leaves (Vitis vinifera cv. DOI: https://doi.org/10.1016/j.plaphy.2015.01.004
Pinot noir). Plant Physiol Biochem., 88, 17–26.
Gutiérrez-Escobar, R., Aliaño-González, M. J., & Cantos-Villar, E. (2021). Wine polyphe-nol content and its influence on wine quality and properties: A review. Molecules, 26(3), 718. DOI: https://doi.org/10.3390/molecules26030718
Gutiérrez-Gamboa, G., Zheng, W., & De Toda, F.M. (2021). Current viticultural tech-niques to mitigate the effects of global warming on grape and wine quality: A comprehensive review. Food Research International, 139, 109946. DOI: https://doi.org/10.1016/j.foodres.2020.109946
Ingram, W. (2016). Increases All Round. Nat. Clim. Chang., 6(5), 443-444. DOI: https://doi.org/10.1038/nclimate2966
Ivanova-Petropulos, V., Petruševa, D., & Mitrev, S. (2020). Rapid and Simple Method for Determination of Target Organic Acids in Wine DOI: https://doi.org/10.1007/s12161-020-01724-4
Using HPLC-DAD Analysis. Food Analytical Methods, 13(5), 1078–1087.
Jones, G.V., Edwards, E.J., Bonada, M., Sadras, V.O., Krstic, M.P.,& Herderich, M.J. (2022). 17 - Climate change and its consequences for viticulture. In Woodhead Pub-lishing Series in Food Science, Technology and Nutrition, Managing Wine Quali-ty, (2ª ed.), 727-778. DOI: https://doi.org/10.1016/B978-0-08-102067-8.00015-4
Kizildeniz, T., Mekni, I., Santesteban, H.,& Pascual, I. (2015). Effects of climate change including elevated CO2 concentration, temperature and water deficit on growth, water status, and yield quality of grapevine (Vitis vinifera L.) cultivars. Agricultural Water Management, 159, 155–164. DOI: https://doi.org/10.1016/j.agwat.2015.06.015
Lecourieux, F. (2017). Dissecting the Biochemical and Transcriptomic Effects of a Lo-cally Applied Heat Treatment on Developing Cabernet Sauvignon Grape Berries. Front. Plant Sci., 8, 1-23. DOI: https://doi.org/10.3389/fpls.2017.00053
Leolini, L., Moriondo, M., Fila, G., Costafreda-Aumedes, S., Ferrise, R., & Bindi, M. (2018). Late spring frost impacts on future grapevine distribution in Europe. Field Crops Research, 222, 197-208. DOI: https://doi.org/10.1016/j.fcr.2017.11.018
Lima, M.M.M., Choy, Y.Y., Tran, J., Lydon, M., & Runnebaum, R.C. (2022). Organic acids characterization: wines of Pinot noir and juices of ‘Bordeaux grape varieties.’ Journal of Food Composition and Analysis, 114, 104745. DOI: https://doi.org/10.1016/j.jfca.2022.104745
Lovisolo, C., Perrone, I., Carra, A., & Ferrandino, A. (2010). Drought-induced changes in development and function of grapevine (Vitis spp.) organs and in their hy-draulic and non-hydraulic interactions at the whole-plant level: a physiological and molecular update. DOI: https://doi.org/10.1071/FP09191
Functional Plant Biology, 37(2), 98.
Martínez-Lüscher, J., Chen, C.C.L., Brillante, L., & Kurtural, S.K. (2020). Mitigating Heat Wave and Exposure Damage to “Cabernet Sauvignon” Wine Grape With Partial Shading Under Two Irrigation Amounts. Front. Plant Sci., 11, 1–15. DOI: https://doi.org/10.3389/fpls.2020.579192
Martínez-Lüscher, J., Morales, F., Sánchez-Dias, M., Delrot, S., Aguirreolea, J., & Gomès, E., Pascual, I. (2015). Climate change conditions (elevated CO2 and temperature) and UV-B radiation affect grapevine (Vitis vinifera cv. Tempranillo) leaf carbon as-similation, altering DOI: https://doi.org/10.1016/j.plantsci.2015.04.001
fruit ripening rates. Plant Sci., 236, 168–176.
Meggio, F. (2022). The interplay between grape ripening and weather anomalies in northern Italy– A modelling exercise. Oeno One, 56(2), 353. DOI: https://doi.org/10.20870/oeno-one.2022.56.2.5438
Mihailescu, E., & Soares, M.B. (2020). The Influence of climate on agricultural deci-sions for three European crops: A systematic review. Front. Sustain. Food Syst., 4, 1–10. DOI: https://doi.org/10.3389/fsufs.2020.00064
Modesti, M., Shmuleviz, R., Macaluso, M., Bianchi, A., Venturi, F., Brizzolara, S., Zinnai, A., & Tonutti, P. (2021). Pre-processing cooling of harvested grapes induces changes in berry composition and metabolism, and affects quality and aroma traits of the resulting wine. DOI: https://doi.org/10.3389/fnut.2021.728510
Frontiers in Nutrition, 8, 1–15.
Morales-Castilla, I., Cortázar-Atauri, I.G, Cook, B.I., Lacombe, T., Parker, A., Van Leeu-wen, C., Nicholas, K.A., & Wolkovich, E.M. (2020). Diversity buffers winegrowing regions from climate change losses. Proceedings National Academy Sci., 117(6), 2864–2869. DOI: https://doi.org/10.1073/pnas.1906731117
Nemzer, B., Kalita, D., Yashin, A.Y., & Yashin, Y.I. (2021). Chemical Composition and Polyphenolic Compounds of Red Wines: Their Antioxidant Activities and Effects on Human Health—A Review. Beverages, 8(1), 1-28. DOI: https://doi.org/10.3390/beverages8010001
Nobre, C. A., Marengo, J. A., Soares, W. R., Assad, E., Schaeffer, R., Scarano, F. R., & Ha-con, S. S. (2012). No Brasil e Limites à Adaptação. 1. ed. São José dos Campos: Ins-tituto Nacional de Pesquisa, 44.
Ollat, N., Van Leeuwen, C., Atauri, I.G.C., & Touzard, J.M. (2017). The challenging issue of climate change for sustainable grape and wine production. Oeno One, 51(2). DOI: https://doi.org/10.20870/oeno-one.2016.0.0.1872
Pessenti, I. L., Ayub, R. A., Melo, H. F., Martins, W. S., Wiecheteck, L. H., & Botelho, R. V. (2021). Qualidade fenólica em cultivares de uva submetida a poda verde e regu-lador Hormonal. Research, Society and Development, 10(4), 39310414227. DOI: https://doi.org/10.33448/rsd-v10i4.14227
Pott, D. M., Osorio, S., & Vallarino, J. G. (2019). From Central to Specialized Metabo-lism: An Overview of Some Secondary Compounds Derived From the Primary Metabolism for Their Role in Conferring Nutritional and Organoleptic Character-istics to Fruit. Front. Plant DOI: https://doi.org/10.3389/fpls.2019.00835
Sci., 10.
Ramos, M.C.,& Yuste, J. (2023). Grapevine phenology of white cultivars in Rueda Des-ignation of Origin (Spain) in response to weather conditions and potential shifts under warmer climate. Agronomy, 13(1), 146. DOI: https://doi.org/10.3390/agronomy13010146
Ramos, M.C., Pérez-Álvarez, E.P., Peregrina, F., & de Toda, F.M. (2020). Relationships between grape composition of Tempranillo variety and available soil water and water stress under different weather conditions. Scientia Horticulturae, 262, 109063. DOI: https://doi.org/10.1016/j.scienta.2019.109063
Ramos, M.C. (2017). Projection of phenology response to climate change in rainfed vineyards in north-east Spain. Agricultural and Forest Meteorology, 247, 104–115. DOI: https://doi.org/10.1016/j.agrformet.2017.07.022
Ren, R., Yue, X., Li, J., Xie, S., Guo, S., & Zhand, Z. (2020). Coexpression of Sucrose Syn-thase and the SWEET Transporter, Which Are Associated With Sugar Hydrolysis and Transport, Respectively, Increases the Hexose Content in Vitis vinifera L. Grape Berries. Front. DOI: https://doi.org/10.3389/fpls.2020.00321
Plant Sci., 11, 1–15.
Rienth, M., Vigneron, N., Darriet, P., Swetman, C., Burbidge, C., Bonghi, C., & Walker, R.P., Famiani, F., Castellarin, S.D. (2021). Grape Berry Secondary Metabolites and Their Modulation by Abiotic Factors in a Climate Change Scenario–A Review. Front. Plant Sci., 12, 1–26. DOI: https://doi.org/10.3389/fpls.2021.643258
Robles, A., Fabjanowicz, M., Chmiel, T., & Płotka-Wasylka, J. (2019). Determination and identification of organic acids in wine samples. Problems and challenges. TrAC Trends in Analytical Chemistry, 120, 115630. DOI: https://doi.org/10.1016/j.trac.2019.115630
Romero, H., Pott, D.M., Vallarino, J.G., & Osorio, S. (2021). Metabolomics-Based Evalu-ation of Crop Quality Changes as a Consequence of Climate Change. Metabolites, 11(7), 461. DOI: https://doi.org/10.3390/metabo11070461
Rufato, L., Marcon Filho, J. L., Brighenti, A. F., Amauri, B., & Kretzschmar, A. A. (2021). A cultura da videira: vitivinicultura de altitude. Editora UDESC, Série Fruticultura, 577.
Rustioni, L., Rocchi, L., Guffanti, E., Cola, G., & Failla, O. (2014). Characterization of Grape (Vitis vinifera L.) Berry Sunburn Symptoms by Reflectance. J Agric and Food Chem., 62(14), 3043–3046. DOI: https://doi.org/10.1021/jf405772f
Sadras, V. O., & Moran, M. A. (2012). Elevated temperature decouples anthocyanins and sugars in berries of Shiraz and Cabernet Franc. Australian Journal of Grape and Wine Research, 18(2), 115–122. DOI: https://doi.org/10.1111/j.1755-0238.2012.00180.x
Santos, R.B., & Figueiredo, A. (2023). Biotic and abiotic stress management in grape-vine: Recent advances and major breakthroughs. Agronomy, 13(6), 1584. DOI: https://doi.org/10.3390/agronomy13061584
Santos, J.A., Fraga, H., Malheiro, A.C., Moutinho-Pereira, J., Dinis, L.T., Correia, C., Mori-ondo, M., Leolini, L., Dibari, C., Costafreda-Aumedes, S., Kartschall, T., Menz, C., Molitor, D., Junk, J., Beyer, M., & Schultz, H.R. (2020). A review of the potential climate change
impacts and adaptation options for European viticulture. Appl. Sci., 10(9), 3092. DOI: https://doi.org/10.3390/app10093092
Santos, D.F., Martins, F.B., & Torres, R.R. (2017). Impacts of climate projections on wa-ter balance and implications on olive crop in Minas Gerais. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(2), 77–82. DOI: https://doi.org/10.1590/1807-1929/agriambi.v21n2p77-82
Savoi, S., Wong, D.C.J., Degu, A., Herrera, J.C., Bucchetti, B., Peterlunger, E., Fait, A., Mattivi, F., & Castellarin, S.D. (2017). Multi-omics and integrated network anal-yses reveal new insights into the systems relationships between metabolites, structural genes, and
transcriptional regulators in developing grape berries (Vi-tis vinifera L.) exposed to water deficit. Front. Plant Sci. 8:1124.
Sgroi, F.,& Sciancalepore, V.D. (2022). Climate change and risk management policies in viticulture. Journal of Agriculture and Food Research, 10, 100363. DOI: https://doi.org/10.1016/j.jafr.2022.100363
Sirén, H., Sirén, K., & Sirén, J. (2015). Evaluation of organic and inorganic compounds levels of red wines processed from Pinot Noir grapes. Analytical Chemistry Re-search, 3, 26–36. DOI: https://doi.org/10.1016/j.ancr.2014.10.002
Skirycz, A., & Inzé, D. (2010). More from less: plant growth under limited water. Cur-rent Opinion in Biotechnology, 21(2), 197–203. DOI: https://doi.org/10.1016/j.copbio.2010.03.002
Stein, T., Carvalho, I. R., Zocche, R. G., Jacobs, S. A., Szareski, V. J., Zocche, F., Aloy, K. G., Santos, L.V., Martins, H. C. G., Rosa, T. C., &
Souza, V. Q. (2018). Climatic variables and their effects on phenolic maturation and potassium uptake in Cabernet Sauvignon wines. Journal of Agricultural Science, 10 (8). DOI: https://doi.org/10.5539/jas.v10n8p388
Straffelini, E., Carrillo, N., Schilardi, C., Aguilera, R., Orrego, M.J.E., & Tarolli, P. (2023). Viticulture in Argentina under extreme weather scenarios: Actual challenges, fu-ture perspectives. Geography and Sustainability, 4(2), 161-169. DOI: https://doi.org/10.1016/j.geosus.2023.03.003
Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., & Midgley, P. M. (2013). Intergovernamental Panel on Climate Change - Summary for Policymaker. Cambridge: Cambridge University Press.
Sweetman, C., Sadras, V.O., Kancock, R.D., Soole, & K.L., Ford, C.M. (2014). Metabolic effects of elevated temperature on organic acid degradation in ripening Vitis vi-nifera fruit. Journal of Experimental Botany, 65(20), 5975–5988. DOI: https://doi.org/10.1093/jxb/eru343
Teker, T. (2023). A study of kaolin effects on grapevine physiology and its ability to protect grape clusters from sunburn damage. Scientia Horticulturae, 311, 111824. DOI: https://doi.org/10.1016/j.scienta.2022.111824
Templ, B., Templ, M., Barbieri, R., Meier, M.,& Zufferey, V. (2021). Coincidence of tem-perature extremes and phenological events of grapevines. Oeno One, 55(1), 367-383. DOI: https://doi.org/10.20870/oeno-one.2021.55.1.3187
Tinyane, P. P., Soundy, P., & Sivakumar, D. (2018). Growing ‘Hass’ avocado fruit under different coloured shade netting improves the marketable yield and affects fruit ripening. Scientia Horticulturae, 230, 43–49. DOI: https://doi.org/10.1016/j.scienta.2017.11.020
Torres, N., Martínez-Lüscher, J., Porte, E., & Kurtural S.K. (2020). Optimal Ranges and Thresholds of Grape Berry Solar Radiation for Flavonoid Biosynthesis in Warm Climates. Front. Plant Sci., 11, 1–15. DOI: https://doi.org/10.3389/fpls.2020.00931
Torres, R. R., Lapola, D. V., Marengo, J. A., & Lombardo, M.A. (2012). Socio-climatic hotspots in Brazil. Climatic Change, 115(4), 597–609. DOI: https://doi.org/10.1007/s10584-012-0461-1
Van Leeuwen, C.,& Darriet, P. (2016). The Impact of Climate Change on Viticulture and Wine Quality. Journal of Wine Economics, 11, 1, DOI: https://doi.org/10.1017/jwe.2015.21
–167.
Vandeleur, R. K., Mayo, G., Shelden, M.C., Gilliham, M., Kaiser, B.N., & Tyerman, S.D. (2009). The Role of Plasma Membrane Intrinsic Protein Aquaporins in Water Transport through Roots: Diurnal and Drought Stress Responses Reveal Differ-ent Strategies between DOI: https://doi.org/10.1104/pp.108.128645
Isohydric and Anisohydric Cultivars of Grapevine. Plant Physiol, 149(1), 445–460.
Vieira, A. C. P., Garcia, J. R., & Bruch, K. L. (2015). Análise exploratória dos potenciais efeitos das mudanças climáticas nos “vales da uva goethe.” Ambiente & Socie-dade, 18,(3), 171–192. DOI: https://doi.org/10.1590/1809-4422ASOC885V1832015
Waterhouse, A. L., Sacks, G. L., & Jeffery, D. W. (2016). Understanding Wine Chemistry. 1. ed. Chichester: John Wiley & Sons. DOI: https://doi.org/10.1002/9781118730720
Woldemeskel, F.M., Sharma, A., Sivakumar, B., & Mehrotra, R. (2016). Quantification of precipitation and temperature uncertainties simulated by CMIP3 and CMIP5 models. Journal of Geophysical Research: Atmospheres, 121 (1), 3–17. DOI: https://doi.org/10.1002/2015JD023719
Xu, F., Xi, Z., Zhang, H., Zhang, C., & Zhang, Z. (2015). Brassinosteroids are involved in controlling sugar unloading in Vitis vinifera ‘Cabernet Sauvignon’ berries during véraison. Plant Physiology and Biochemistry, 94, 197–208. DOI: https://doi.org/10.1016/j.plaphy.2015.06.005
Zocche, R. G. S., Jacobs, S. A., Sampaio, N. V., Souza, V. Q., Carvalho, I. R., Nardino, M., Rizzon, L. A., & Rombaldi, C. V. (2017). Wines produced with 'Cabernet Sauvi-gnon' grapes from the region of Bagé in the state of Rio Grande do Sul, Brazil. Pesq. agropec. Bras., DOI: https://doi.org/10.1590/s0100-204x2017000500004
(5), 311-318.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Ciência e Natura
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Para acessar a DECLARAÇÃO DE ORIGINALIDADE E EXCLUSIVIDADE E CESSÃO DE DIREITOS AUTORAIS clique aqui.
Diretrizes Éticas para Publicação de Revistas
A revista Ciência e Natura está empenhada em garantir a ética na publicação e na qualidade dos artigos.
A conformidade com padrões de comportamento ético é, portanto, esperada de todas as partes envolvidas: Autores, Editores e Revisores.
Em particular,
Autores: Os Autores devem apresentar uma discussão objetiva sobre a importância do trabalho de pesquisa, bem como detalhes e referências suficientes para permitir que outros reproduzam as experiências. Declarações fraudulentas ou intencionalmente incorretas constituem comportamento antiético e são inaceitáveis. Artigos de Revisão também devem ser objetivos, abrangentes e relatos precisos do estado da arte. Os Autores devem assegurar que seu trabalho é uma obra totalmente original, e se o trabalho e / ou palavras de outros têm sido utilizadas, isso tem sido devidamente reconhecido. O plágio em todas as suas formas constitui um comportamento publicitário não ético e é inaceitável. Submeter o mesmo manuscrito a mais de um jornal simultaneamente constitui um comportamento publicitário não ético e é inaceitável. Os Autores não devem submeter artigos que descrevam essencialmente a mesma pesquisa a mais de uma revista. O Autor correspondente deve garantir que haja um consenso total de todos os Co-autores na aprovação da versão final do artigo e sua submissão para publicação.
Editores: Os Editores devem avaliar manuscritos exclusivamente com base no seu mérito acadêmico. Um Editor não deve usar informações não publicadas na própria pesquisa do Editor sem o consentimento expresso por escrito do Autor. Os Editores devem tomar medidas de resposta razoável quando tiverem sido apresentadas queixas éticas relativas a um manuscrito submetido ou publicado.
Revisores: Todos os manuscritos recebidos para revisão devem ser tratados como documentos confidenciais. As informações ou ideias privilegiadas obtidas através da análise por pares devem ser mantidas confidenciais e não utilizadas para vantagens pessoais. As revisões devem ser conduzidas objetivamente e as observações devem ser formuladas claramente com argumentos de apoio, de modo que os Autores possam usá-los para melhorar o artigo. Qualquer Revisor selecionado que se sinta desqualificado para rever a pesquisa relatada em um manuscrito ou sabe que sua rápida revisão será impossível deve notificar o Editor e desculpar-se do processo de revisão. Os Revisores não devem considerar manuscritos nos quais tenham conflitos de interesse resultantes de relacionamentos ou conexões competitivas, colaborativas ou outras conexões com qualquer dos autores, empresas ou instituições conectadas aos documentos.