Projeto de sistemas de engenharia usando o algoritmo de sistemas de partículas vibrantes

Autores

DOI:

https://doi.org/10.5902/2179460X74073

Palavras-chave:

Algoritmo de sistemas de partículas vibrantes, Otimização heurística, Projeto de sistemas de engenharia

Resumo

O presente trabalho tem por objetivo a aplicação do Algoritmo de Sistema de Partículas Vibrantes (ASPV) no projeto de sistemas de engenharia. De forma geral, esta estratégia de otimização é fundamentada na simulação da vibração livre de um sistema subamortecido constituído por partículas que aos poucos se aproximam de suas posições de equilíbrio. Para avaliar a capacidade desta estratégia de otimização, três problemas clássicos no contexto da engenharia (projeto de uma viga soldada, projeto de um vaso de pressão e o projeto de uma mola) são estudados. Os resultados obtidos demonstram que o ASPV configura como uma alternativa interessante em comparação com outras estratégias heurísticas.

Downloads

Não há dados estatísticos.

Biografia do Autor

Fran Sérgio Lobato, Universidade Federal de Uberlândia

Fran S´ergio Lobato is chemical engineer, master of science degree in chemical engineering, and the doctor degree in mechanical engineering from the Federal University of Uberlˆandia, Brazil. His current research interests include bio-inspired optimization algorithms, optimal control theory, and formulation and solution of inverse problems.

Jéssica Cristiane Andrade, Universidade Federal de Uberlândia

Jéssica Cristiane Andrade is mechanical engineer and master of science degree in mechanical engineering from the Federal University of Uberlˆandia, Brazil. His main area of expertise is engineering system design.

Referências

ARORA, J. S. Introduction to Optimum Design. New York: McGraw-Hill, 1989.

BELEGUNDU, A. D. A study of mathematical programming methods for structural optimization. 1982. Tese (Doutorado) – University of Iowa, 1982.

COELLO, C. A. C. Use of a self-adaptive penalty approach for engineering optimization problems. Computers in Industry, Elsevier, v. 41, n. 2, p.113-127, 2000.

COELLO, C. A. C.; MONTES, E. M. Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Advanced Engineering Informatics, Elsevier, v. 16, n. 3, p.193-203, 2002.

DEB, K. Optimal design of a welded beam via genetic algorithms. AIAA Journal, v. 29, n. 11, p.2013-2015, 1991.

DEB, K. GeneAS: A robust optimal design technique for mechanical component design. In: DASGUPTA, D.; MICHALEWICS, Z. (org.). Evolutionary Algorithms in Engineering Applications. Berlin: Springer, 1997. p. 497-514.

DEB, K. Multi-Objective Optimization using Evolutionary Algorithms. Chichester (England): John Wiley & Sons, 2001.

FLETCHER, R. An ideal penalty function for constrained optimization. IMA Journal of Applied Mathematics, Oxford University Press, v. 15, n. 3, p. 319-342, 1975.

GNETCHEJO, P. J.; ESSIANE, S. N.; ELE, P.; WAMKEUE, R.; WAPET, D. M.; NGOFFE, S. P. Enhanced vibrating particles system algorithm for parameters estimation of photovoltaic system. Journal of Power and Energy Engineering, Scientific Research Publishing, v. 7, n. 8, p. 1-26, 2019.

HE, Q.; WANG, L. An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Engineering Applications of Artificial Intelligence, Elsevier, v. 20, n. 1, p. 89-99, 2007.

KANNAN, B. K.; KRAMER, S. N. An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. Journal of Mechanical Design, v. 116, n. 2, p. 405-411, 1994.

KAVEH, A. Vibrating particles system algorithm. In: Advances in Metaheuristic Algorithms for Optimal Design of Structures. Switzerland: Springer, 2017. p. 511-539.

KAVEH, A.; BAKHSHPOORI, T. Metaheuristics: outlines, MATLAB codes and examples. Switzerland: Springer, 2019.

KAVEH, A.;GHAZAAN, M. I. Vibrating particles system algorithm for truss optimization with multiple natural frequency constraints. ActaMechanica, Springer, v. 228, n. 1, p. 307-322, 2017.

KAVEH, A.;TALATAHARI, S. Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures. Computers & Structures, Elsevier, v. 87, n. 5-6, p. 267-283, 2009.

KAVEH, A.;TALATAHARI, S. An improved ant colony optimization for constrained engineering design problems. Engineering Computations, Emerald Group Publishing Limited, v. 27, n. 1, p. 155-182, 2010.

LOBATO, F. S. Otimização multi-objetivo para o projeto de sistemas de engenharia. 2008. 354 p. Tese (Doutorado em Engenharia Mecânica) – Universidade Federal de Uberlândia, Uberlândia, 2008.

MONTES, E. M.; COELLO, C. A. C. An empirical study about the usefulness of evolution strategies to solve constrained optimization problems. International Journal of General Systems, v.37, n. 4, p. 443-473, 2008.

SANDGREN, E. Nonlinear integer and discrete programming in mechanical design. In: Proceedings of the ASME Design Technology Conference. International design engineering technical conferences and computers and information in engineering conference, 1988, Kissimine, FL.p. 95-105.

TALATAHARI, S.; JALILI, S.; AZIZI, M. Optimum design of steel building structures using migration-based vibrating particles system. Structures, Elsevier, v. 33, p. 1394-1413, 2021.

VANDERPLAATS, G.N. Numerical Optimization Techniques for Engineering Design. USA: Vanderplaats Research & Development Inc, 1999.

Downloads

Publicado

2023-12-01

Como Citar

Lobato, F. S., & Andrade, J. C. (2023). Projeto de sistemas de engenharia usando o algoritmo de sistemas de partículas vibrantes. Ciência E Natura, 45(esp. 3), e74073. https://doi.org/10.5902/2179460X74073

Artigos Semelhantes

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.