Quantificação de fibras microplásticas provenientes da lavagem de tecidos

Autores

DOI:

https://doi.org/10.5902/2179460X68810

Palavras-chave:

Microplásticos, Lavagem doméstica, Recursos Hídricos

Resumo

Fragmentos de fibras provenientes de materiais têxteis sintéticos são um subgrupo dos microplásticos, e a presença destes detritos no ambiente pode ser dar de algumas fontes. Com o propósito de investigar a formação destes resíduos durante a lavagem doméstica, foram simuladas lavagens em amostras de artigos têxteis com três composições sintéticas distintas (poliamida, acrílico e poliéster). O efluente gerado foi coletado e filtrado, retendo as fibras microplásticas desprendidas. Por um processo de gravimetria, foi determinado a massa de partículas aderidas aos filtros, e com o uso de um corante fluorescente (Nile Red), estas partículas foram quantificadas em microscópio de fluorescência. Este estudo concluiu que as diferentes composições têxteis liberaram fibras microplásticas durante cinco ciclos de lavagem. Amostras de acrílico liberaram o maior valor de massa (40,9 mg), e poliamida o menor valor (7,5 mg). Estimou-se que uma blusa de acrílico possa desprender 726 mg de fibras microplásticas em uma única lavagem. Em relação ao tamanho destas partículas, foram observadas dimensões variando de 11 µm a 3 mm. A visualização em filtro de 1,2 μm sugere ainda a existência de partículas em dimensões nano. De maneira geral, foi possível estabelecer que a lavagem doméstica de artigos têxteis possui elevada contribuição na inserção destes poluentes em meio hídrico. Em uma perspectiva nacional, cerca de 13,8 mil toneladas de fibras sintéticas podem ser liberadas nos recursos hídricos anualmente, a partir da lavagem de roupas.

Downloads

Não há dados estatísticos.

Biografia do Autor

Hudini Chiaramont Maciel, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS

Graduate in Environmental Engineering.

Marcelo Oliveira Caetano, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS

PhD in Mineral, Environmental and Extractive Metallurgy Technology.

Uwe Horst Schulz, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS

Professor, PhD in Biological Sciences

Amanda Gonçalves Kieling, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS

Possui graduação em Engenharia de Alimentos pela Universidade do Vale do Rio dos Sinos. Mestre em Engenharia Civil - Área de concentração: Gerenciamento de Resíduos pela Universidade do Vale do Rio dos Sinos. Doutora em Engenharia - Área de Concentração: Tecnologia Mineral, Ambiental e de Metalurgia extrativa pela Universidade Federal do Rio Grande do Sul.

Referências

ALLEN, AUSTIN S.; SEYMOUR, ALEXANDER C.; RITTSCHOF, DANIEL. Chemoreception drives plastic consumption in a hard coral. Marine Pollution Bulletin, [s.l.], v. 124, n. 1, p.198-205, nov. 2017. Elsevier BV. http://dx.doi.org/10.1016/j.marpolbul.2017.07.030.

ALMROTH, BETHANIE M. CARNEY; ÅSTRÖM, LINN; ROSLUND, SOFIA; PETERSSON, HANNA; JOHANSSON, MATS; PERSSON, NILS-KRISTER. Quantifying shedding of synthetic fibers from textiles; a source of microplastics released into the environment. Environmental Science And Pollution Research, [S.L.], v. 25, n. 2, p. 1191-1199, 28 out. 2017. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s11356-017-0528-7.

BRASIL. Ministério do Desenvolvimento, Indústria e Comércio Exterior. Conselho Nacional de Metrologia, Normalização e Qualidade Industrial – CONMETRO. Resolução nº02, de 6 de maio de 2008. Dispõe sobre a aprovação do Regulamento Técnico Mercosul sobre etiquetagem de produtos têxteis. Diário Oficial da República Federativa do Brasil, Brasília, DF, 09 maio 2008, Seção 1, p.77-79.

BRASIL. Ministério do Desenvolvimento Regional. Sistema Nacional de Informações sobre Saneamento– SNIS: Diagnóstico dos Serviços de Água e Esgotos – 2019 Brasília, 2019, p. 62. Disponível em: http://www.snis.gov.br/downloads/diagnosticos/ae/2019/Diagn%c3%b3stico%20SNIS%20AE_2019_Republicacao_04022021.pdf. Acesso em: 4 de ago. 2021.

BROWNE, MARK .A., CRUMP, P., NIVEN, S.J., TEUTEN, E., TONKIN, A., GALLOWAY, T., THOMPSON, R.,. Accumulation of microplastic on shorelines worldwide: Sources and sinks. Environmental Science & Technology, [s.l.], v. 45, n. 21, p.9175-9179, nov. 2011. American Chemical Society (ACS). http://dx.doi.org/10.1021/es201811s.

CAIXETA, DANIELA; CAIXETA, FREDERICO; MENEZES FILHO, FREDERICO. Nano e microplásticos nos ecossistemas: impactos ambientais e efeitos sobre os organismos. Enciclopédia Biosfera, [s.l.], v. 15, n. 27, p.19-34, 20 jun. 2018. Centro Cientifico Conhecer. http://dx.doi.org/10.18677/encibio_2018a92.

CARR, STEVE A. Sources and dispersive modes of micro-fibers in the environment. Integrated Environmental Assessment And Management, [s.l.], v. 13, n. 3, p.466-469, 25 abr. 2017. Wiley. http://dx.doi.org/10.1002/ieam.1916.

CESA, FLAVIA SALVADOR; TURRA, ALEXANDER; BARUQUE-RAMOS, JULIA. Synthetic fibers as microplastics in the marine environment: A review from textile perspective with a focus on domestic washings. Science Of The Total Environment, [s.l.], v. 598, p.1116-1129, nov. 2017. Elsevier BV. http://dx.doi.org/10.1016/j.scitotenv.2017.04.172.

CLAESSENS, MICHIEL et al. New techniques for the detection of microplastics in sediments and field collected organisms. Marine Pollution Bulletin, [s.l.], v. 70, n. 1-2, p.227-233, maio 2013. Elsevier BV. http://dx.doi.org/10.1016/j.marpolbul.2013.03.009.

COLE, MATTHEW et al. Isolation of microplastics in biota-rich seawater samples and marine organisms. Scientific Reports, [s.l.], v. 4, n. 4528, 31 mar. 2014. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/srep04528.

COSTA, J. P., SANTO, P. S. M., DUARTE, A. C., ROCHA-SANTOS, T. (Nano)plastics in the environment – Sources, fates and effects. Science Of The Total Environment, [s.l.], v. 566-567, p.15-26, out. 2016. Elsevier BV. http://dx.doi.org/10.1016/j.scitotenv.2016.05.041.

CYTIVA, LIFE SCIENCES. Whatman filter paper grade GF/C. Disponívelem: https://www.cytivalifesciences.com/en/br/shop/whatman-laboratory-filtration/glass-and-quartz-microfiber-filter/binderless-glass-microfiber-filter/whatman-filter-paper-grade-gf-c-microfiber-glass-filter-binder-free-p-09618#tech-spec-table. Acesso em: 19 out. de 2020.

DIAS, SILVIO LUIS PEREIRA et al. Química analítica: teoria e prática essenciais. Porto Alegre: Bookman, 2016.

DRIS, RACHID; GASPERI, JOHNNY; MIRANDE, CÉCILE; MANDIN, CORINNE; GUERROUACHE, MOHAMED; LANGLOIS, VALÉRIE; TASSIN, BRUNO. A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environmental Pollution, [S.L.], v. 221, p. 453-458, fev. 2017. Elsevier BV. http://dx.doi.org/10.1016/j.envpol.2016.12.013.

DUPONT©. Brazil laundry habits & attitudes, TNS, January 2013. Disponível em : http://fhc.biosciences.dupont.com/fileadmin/user_upload/live/fhc/FHC_DuPontBrazilLaundryinfographic.pdf. Acesso em: 17 ago. 2019.

EERKES-MEDRANO, DAFNE; LESLIE, HEATHER A.; QUINN, BRIAN. Microplastics in drinking water: a review and assessment. Current Opinion In Environmental Science & Health, [S.L.], v. 7, p. 69-75, fev. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.coesh.2018.12.001.

EERKES-MEDRANO, DAFNE; THOMPSON, RICHARD C.; ALDRIDGE, DAVID C.. Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritization of research needs. Water Research, [S.L.], v. 75, p. 63-82, maio 2015. Elsevier BV. http://dx.doi.org/10.1016/j.watres.2015.02.012

HENRY, BEVERLEY; LAITALA, KIRSI; KLEPP, INGUN GRIMSTAD. Microfibres from apparel and home textiles: Prospects for including microplastics in environmental sustainability assessment. Science Of The Total Environment, [s.l.], v. 652, p.483-494, fev. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.scitotenv.2018.10.166.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Séries históricas e estatísticas, 2015. Disponível em: https://seriesestatisticas.ibge.gov.br/series.aspx?no=6&op=0&vcodigo=PD280&t=domicilios-particulares-permanentes-posse-maquina-lavar. Acesso em: 24 de out. de 2019.

KOSUTH, MARY; MASON, SHERRI A.; WATTENBERG, ELIZABETH V.. Anthropogenic contamination of tap water, beer, and sea salt. Plos One, [s.l.], v. 13, n. 4, 11 abr. 2018. Public Library of Science (PLoS). http://dx.doi.org/10.1371/journal.pone.0194970.

LI, JINGYI; LIU, HUIHUI; CHEN, J. PAUL. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Research, [s.l.], v. 137, p.362-374, jun. 2018. Elsevier BV. http://dx.doi.org/10.1016/j.watres.2017.12.056.

MAES, THOMAS; JESSOP, REBECA; WELLNER, NIKOLAUS; HAUPT, KARSTEN; MAYES, ANDREW G. A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red. Scientific Reports, [s.l.], v. 7, n. 1, 16 mar. 2017. Springer Nature. http://dx.doi.org/10.1038/srep44501.

MASON, SHERRI A.; WELCH, VICTORIA G.; NERATKO, JOSEPH. Synthetic Polymer Contamination in Bottled Water. Frontiers In Chemistry, [s.l.], v. 6, p.2-17, 11 set. 2018. Frontiers Media SA. http://dx.doi.org/10.3389/fchem.2018.00407.

MATTSSON, KARIN et al. Altered Behavior, Physiology, and Metabolism in Fish Exposed to Polystyrene Nanoparticles. Environmental Science & Technology, [s.l.], v. 49, n. 1, p.553-561, 9 dez. 2014. American Chemical Society (ACS). http://dx.doi.org/10.1021/es5053655.

REVEL, MESSIKA; CHÂTEL, AMÉLIE; MOUNEYRAC, CATHERINE. Micro(nano)plastics: a threat to human health?.Current Opinion In Environmental Science & Health, [S.L.], v. 1, p. 17-23, fev. 2018. Elsevier BV. http://dx.doi.org/10.1016/j.coesh.2017.10.003.

THOMPSON, RICHARD C. et al. Plastics, the environment and human health: current consensus and future trends. Philosophical Transactions Of The Royal Society B: Biological Sciences, [s.l.], v. 364, n. 1526, p.2153-2166, 27 jul. 2009. The Royal Society. http://dx.doi.org/10.1098/rstb.2009.0053.

ZIAJAHROMI, SHIMA et al. Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics. Water Research, [s.l.], v. 112, p.93-99, abr. 2017. Elsevier BV. http://dx.doi.org/10.1016/j.watres.2017.01.042.

Publicado

2022-04-04 — Atualizado em 2022-04-12

Versões

Como Citar

Maciel, H. C., Caetano, M. O., Schulz, U. H., & Kieling, A. G. (2022). Quantificação de fibras microplásticas provenientes da lavagem de tecidos. Ciência E Natura, 44, e4. https://doi.org/10.5902/2179460X68810 (Original work published 4º de abril de 2022)

Edição

Seção

Edição Especial