Quantifying shedding of microplastic fibers from textile washing
DOI:
https://doi.org/10.5902/2179460X68810Keywords:
Microplastics, Domestic Washing, Water ResourcesAbstract
Fiber fragments from synthetic textile materials are a subgroup of microplastics, and the presence of this debris in the environment may have its origin from some different sources. In order to investigate the formation of these residues during domestic washing, washings were simulated on samples of textile articles consisting of three different synthetic materials (polyamide, acrylic, and polyester). The effluent generated was collected and filtered, retaining the microplastic fibers shed. Through a gravimetric process, the mass of particles adhered to the filters was determined, and with the use of a fluorescent dye (Nile Red), these particles were quantified under a fluorescence microscope. This study concluded that the different textile compositions shed microplastic fibers during five washing cycles. Acrylic samples shed the highest mass value (40.9 mg) and polyamide samples shed the lowest value (7.5 mg). It has been estimated that an acrylic blouse can shed 726 mg of microplastic fibers in a single washing. Regarding the size of these particles, dimensions ranging from 11µm to 3mm were observed. Visualization in a 1.2μm filter also suggests the existence of particles in nano-dimensions. In general, it was possible to establish that the domestic washing of textile articles highly contributes to the insertion of these pollutants into the water environment. From a national perspective, approximately 13,800 tons of synthetic fibers can be released into water resources annually from washing clothes.
Downloads
References
ALLEN, AUSTIN S.; SEYMOUR, ALEXANDER C.; RITTSCHOF, DANIEL. Chemoreception drives plastic consumption in a hard coral. Marine Pollution Bulletin, [s.l.], v. 124, n. 1, p.198-205, nov. 2017. Elsevier BV. http://dx.doi.org/10.1016/j.marpolbul.2017.07.030.
ALMROTH, BETHANIE M. CARNEY; ÅSTRÖM, LINN; ROSLUND, SOFIA; PETERSSON, HANNA; JOHANSSON, MATS; PERSSON, NILS-KRISTER. Quantifying shedding of synthetic fibers from textiles; a source of microplastics released into the environment. Environmental Science And Pollution Research, [S.L.], v. 25, n. 2, p. 1191-1199, 28 out. 2017. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s11356-017-0528-7.
BRASIL. Ministério do Desenvolvimento, Indústria e Comércio Exterior. Conselho Nacional de Metrologia, Normalização e Qualidade Industrial – CONMETRO. Resolução nº02, de 6 de maio de 2008. Dispõe sobre a aprovação do Regulamento Técnico Mercosul sobre etiquetagem de produtos têxteis. Diário Oficial da República Federativa do Brasil, Brasília, DF, 09 maio 2008, Seção 1, p.77-79.
BRASIL. Ministério do Desenvolvimento Regional. Sistema Nacional de Informações sobre Saneamento– SNIS: Diagnóstico dos Serviços de Água e Esgotos – 2019 Brasília, 2019, p. 62. Disponível em: http://www.snis.gov.br/downloads/diagnosticos/ae/2019/Diagn%c3%b3stico%20SNIS%20AE_2019_Republicacao_04022021.pdf. Acesso em: 4 de ago. 2021.
BROWNE, MARK .A., CRUMP, P., NIVEN, S.J., TEUTEN, E., TONKIN, A., GALLOWAY, T., THOMPSON, R.,. Accumulation of microplastic on shorelines worldwide: Sources and sinks. Environmental Science & Technology, [s.l.], v. 45, n. 21, p.9175-9179, nov. 2011. American Chemical Society (ACS). http://dx.doi.org/10.1021/es201811s.
CAIXETA, DANIELA; CAIXETA, FREDERICO; MENEZES FILHO, FREDERICO. Nano e microplásticos nos ecossistemas: impactos ambientais e efeitos sobre os organismos. Enciclopédia Biosfera, [s.l.], v. 15, n. 27, p.19-34, 20 jun. 2018. Centro Cientifico Conhecer. http://dx.doi.org/10.18677/encibio_2018a92.
CARR, STEVE A. Sources and dispersive modes of micro-fibers in the environment. Integrated Environmental Assessment And Management, [s.l.], v. 13, n. 3, p.466-469, 25 abr. 2017. Wiley. http://dx.doi.org/10.1002/ieam.1916.
CESA, FLAVIA SALVADOR; TURRA, ALEXANDER; BARUQUE-RAMOS, JULIA. Synthetic fibers as microplastics in the marine environment: A review from textile perspective with a focus on domestic washings. Science Of The Total Environment, [s.l.], v. 598, p.1116-1129, nov. 2017. Elsevier BV. http://dx.doi.org/10.1016/j.scitotenv.2017.04.172.
CLAESSENS, MICHIEL et al. New techniques for the detection of microplastics in sediments and field collected organisms. Marine Pollution Bulletin, [s.l.], v. 70, n. 1-2, p.227-233, maio 2013. Elsevier BV. http://dx.doi.org/10.1016/j.marpolbul.2013.03.009.
COLE, MATTHEW et al. Isolation of microplastics in biota-rich seawater samples and marine organisms. Scientific Reports, [s.l.], v. 4, n. 4528, 31 mar. 2014. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/srep04528.
COSTA, J. P., SANTO, P. S. M., DUARTE, A. C., ROCHA-SANTOS, T. (Nano)plastics in the environment – Sources, fates and effects. Science Of The Total Environment, [s.l.], v. 566-567, p.15-26, out. 2016. Elsevier BV. http://dx.doi.org/10.1016/j.scitotenv.2016.05.041.
CYTIVA, LIFE SCIENCES. Whatman filter paper grade GF/C. Disponívelem: https://www.cytivalifesciences.com/en/br/shop/whatman-laboratory-filtration/glass-and-quartz-microfiber-filter/binderless-glass-microfiber-filter/whatman-filter-paper-grade-gf-c-microfiber-glass-filter-binder-free-p-09618#tech-spec-table. Acesso em: 19 out. de 2020.
DIAS, SILVIO LUIS PEREIRA et al. Química analítica: teoria e prática essenciais. Porto Alegre: Bookman, 2016.
DRIS, RACHID; GASPERI, JOHNNY; MIRANDE, CÉCILE; MANDIN, CORINNE; GUERROUACHE, MOHAMED; LANGLOIS, VALÉRIE; TASSIN, BRUNO. A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environmental Pollution, [S.L.], v. 221, p. 453-458, fev. 2017. Elsevier BV. http://dx.doi.org/10.1016/j.envpol.2016.12.013.
DUPONT©. Brazil laundry habits & attitudes, TNS, January 2013. Disponível em : http://fhc.biosciences.dupont.com/fileadmin/user_upload/live/fhc/FHC_DuPontBrazilLaundryinfographic.pdf. Acesso em: 17 ago. 2019.
EERKES-MEDRANO, DAFNE; LESLIE, HEATHER A.; QUINN, BRIAN. Microplastics in drinking water: a review and assessment. Current Opinion In Environmental Science & Health, [S.L.], v. 7, p. 69-75, fev. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.coesh.2018.12.001.
EERKES-MEDRANO, DAFNE; THOMPSON, RICHARD C.; ALDRIDGE, DAVID C.. Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritization of research needs. Water Research, [S.L.], v. 75, p. 63-82, maio 2015. Elsevier BV. http://dx.doi.org/10.1016/j.watres.2015.02.012
HENRY, BEVERLEY; LAITALA, KIRSI; KLEPP, INGUN GRIMSTAD. Microfibres from apparel and home textiles: Prospects for including microplastics in environmental sustainability assessment. Science Of The Total Environment, [s.l.], v. 652, p.483-494, fev. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.scitotenv.2018.10.166.
INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Séries históricas e estatísticas, 2015. Disponível em: https://seriesestatisticas.ibge.gov.br/series.aspx?no=6&op=0&vcodigo=PD280&t=domicilios-particulares-permanentes-posse-maquina-lavar. Acesso em: 24 de out. de 2019.
KOSUTH, MARY; MASON, SHERRI A.; WATTENBERG, ELIZABETH V.. Anthropogenic contamination of tap water, beer, and sea salt. Plos One, [s.l.], v. 13, n. 4, 11 abr. 2018. Public Library of Science (PLoS). http://dx.doi.org/10.1371/journal.pone.0194970.
LI, JINGYI; LIU, HUIHUI; CHEN, J. PAUL. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Research, [s.l.], v. 137, p.362-374, jun. 2018. Elsevier BV. http://dx.doi.org/10.1016/j.watres.2017.12.056.
MAES, THOMAS; JESSOP, REBECA; WELLNER, NIKOLAUS; HAUPT, KARSTEN; MAYES, ANDREW G. A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red. Scientific Reports, [s.l.], v. 7, n. 1, 16 mar. 2017. Springer Nature. http://dx.doi.org/10.1038/srep44501.
MASON, SHERRI A.; WELCH, VICTORIA G.; NERATKO, JOSEPH. Synthetic Polymer Contamination in Bottled Water. Frontiers In Chemistry, [s.l.], v. 6, p.2-17, 11 set. 2018. Frontiers Media SA. http://dx.doi.org/10.3389/fchem.2018.00407.
MATTSSON, KARIN et al. Altered Behavior, Physiology, and Metabolism in Fish Exposed to Polystyrene Nanoparticles. Environmental Science & Technology, [s.l.], v. 49, n. 1, p.553-561, 9 dez. 2014. American Chemical Society (ACS). http://dx.doi.org/10.1021/es5053655.
REVEL, MESSIKA; CHÂTEL, AMÉLIE; MOUNEYRAC, CATHERINE. Micro(nano)plastics: a threat to human health?.Current Opinion In Environmental Science & Health, [S.L.], v. 1, p. 17-23, fev. 2018. Elsevier BV. http://dx.doi.org/10.1016/j.coesh.2017.10.003.
THOMPSON, RICHARD C. et al. Plastics, the environment and human health: current consensus and future trends. Philosophical Transactions Of The Royal Society B: Biological Sciences, [s.l.], v. 364, n. 1526, p.2153-2166, 27 jul. 2009. The Royal Society. http://dx.doi.org/10.1098/rstb.2009.0053.
ZIAJAHROMI, SHIMA et al. Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics. Water Research, [s.l.], v. 112, p.93-99, abr. 2017. Elsevier BV. http://dx.doi.org/10.1016/j.watres.2017.01.042.
Published
Versions
- 2022-04-12 (3)
- 2022-04-12 (2)
- 2022-04-04 (1)
How to Cite
Issue
Section
License
Copyright (c) 2022 Ciência e Natura
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To access the DECLARATION AND TRANSFER OF COPYRIGHT AUTHOR’S DECLARATION AND COPYRIGHT LICENSE click here.
Ethical Guidelines for Journal Publication
The Ciência e Natura journal is committed to ensuring ethics in publication and quality of articles.
Conformance to standards of ethical behavior is therefore expected of all parties involved: Authors, Editors, Reviewers, and the Publisher.
In particular,
Authors: Authors should present an objective discussion of the significance of research work as well as sufficient detail and references to permit others to replicate the experiments. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. Review Articles should also be objective, comprehensive, and accurate accounts of the state of the art. The Authors should ensure that their work is entirely original works, and if the work and/or words of others have been used, this has been appropriately acknowledged. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. Authors should not submit articles describing essentially the same research to more than one journal. The corresponding Author should ensure that there is a full consensus of all Co-authors in approving the final version of the paper and its submission for publication.
Editors: Editors should evaluate manuscripts exclusively on the basis of their academic merit. An Editor must not use unpublished information in the editor's own research without the express written consent of the Author. Editors should take reasonable responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper.
Reviewers: Any manuscripts received for review must be treated as confidential documents. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should be conducted objectively, and observations should be formulated clearly with supporting arguments, so that Authors can use them for improving the paper. Any selected Reviewer who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the Editor and excuse himself from the review process. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.