Impacto do acoplamento oceano-atmosfera no sistema de previsão de muito curto prazo, durante o impacto do furacão Matthew em Cuba
DOI:
https://doi.org/10.5902/2179460X66169Palavras-chave:
Dinâmica atmosférica, Temperatura da superfície do mar, Furacão Matthew, Sistema de modelagem oceano-atmosfera acoplado, Sistema de previsão de muito curto prazoResumo
O objetivo principal desta investigação é analisar o impacto da inserção do acoplamento oceano-atmosfera no sistema de previsão de muito curto prazo de Cuba. Os componentes acoplados oceano-atmosfera do Sistema de Modelagem Acoplado Oceano-Atmosfera-Onda-Transporte do Sedimento, são usados para este propósito e o furacão Matthew é selecionado como caso de estudo. Dois experimentos são realizados: primeiro, usando uma temperatura dinâmica da superfície do mar atualizada diariamente o WRF; e a segunda usando um acoplamento dinâmico entre os modelos atmosférico e oceânico. Para a trajetória simulada, os melhores resultados são obtidos com o sistema acoplado. O impacto do acoplamento nas velocidades máximas do vento e na pressão central mínima é estudado. No sistema acoplado, a temperatura da superfície do mar tem mais influência nos fluxos de calor latente à superfície. Além disso, com esta metodologia a pegada seca e o comportamento do campo de precipitação na presença de um furacão são estudados. Esta análise mostra que o furacão atua como um sistema aberto e autossustentável nos experimentos numéricos. As maiores diferenças nas simulações de precipitação estão na significativa área convectiva dentro do furacão.
Downloads
Referências
Ballester, M., Rubiera, J. (2016). Temporada ciclónica de 2016 en el atlántico norte. Available on: https://www.insmet.cu/asp/genesis.asp?TB0=PLANTILLAS&TB1=TEMPORADA&TB2=/Temporadas/temporada2016.html. Accessed on: Mar. 2 2021.
Bender, M. A., Ginis, I. (2000). Real-case simulations of hurricane–ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Monthly Weather Review, 128(4), 917–946.
Booij, N., Holthuijsen, L., Ris, R. (1997). The"swan"wave model for shallow water. Em: Coastal Engineering 1996, pp. 668–676.
Egbert, G. D., Erofeeva, S. Y. (2002). Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic technology, 19(2), 183–204.
Gemmill, W., Katz, B., Li, X. (2007). Daily real-time, global sea surface temperature—high-resolution analysis: Rtg_sst_hr. ncep. Relatório Técnico, EMC Tech. Rep. 260, 39 pp. Available on: http://polar.ncep.noaa.gov. Accessed on: Jan. 12 2020
Geyer, W., Sherwood, C. R., Keen, T. (2007). Community sediment transport model. Relatório Técnico, WOODS HOLE OCEANOGRAPHIC INSTITUTION MA.
Glickman, T. (2000). Glossary of Meteorology. American Meteorological Society. Available on: http://glossary.ametsoc.org/wiki/Precipitable_water. Accessed on: Mar. 2 2021.
Grell, G. A., Freitas, S. R. (2014). A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmospheric Chemistry and Physics, 14(10), 5233–5250.
Hegermiller, C. A., Warner, J. C., Olabarrieta, M., Sherwood, C. R. (2019). Wave–current interaction between hurricane matthew wave fields and the gulf stream. Journal of Physical Oceanography, 49(11), 2883–2900.
Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. IEEE Annals of the History of Computing, 9(03), 90–95.
Jones, P. W. (1999). First-and second-order conservative remapping schemes for grids in spherical coordinates. Monthly Weather Review, 127(9), 2204–2210.
Joyce, R. J., Janowiak, J. E., Arkin, P. A., Xie, P. (2004). Cmorph: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of hydrometeorology, 5(3), 487–503.
Landsea, C., Franklin, J., Beven, J. (2015). The revised atlantic hurricane database. Relatório Técnico, National Hurricane Center.
Larson, J. W., Jacob, R. L., Foster, I., Guo, J. (2001). The model coupling toolkit. Em: International Conference on Computational Science, Springer, pp. 185–194.
Lim, J. O. J., Hong, S., Dudhia, J. (2004). The wrf single-moment-microphysics scheme and its evaluation of the simulation of mesoscale convective systems. Em: 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, pp. 1–15.
Makarieva, A. M., Gorshkov, V. G., Nefiodov, A. V., Chikunov, A. V., Sheil, D., Nobre, A. D., Li, B. L. (2017). Fuel for cyclones: The water vapor budget of a hurricane as dependent on its movement. Atmospheric Research, 193, 216–230.
Maturi, E., Harris, A., Merchant, C., Mittaz, J., Potash, B., Meng, W., Sapper, J. (2008). Noaa’s sea surface temperature products from operational geostationary satellites. Bulletin of the American Meteorological Society, 89(12), 1877 – 1888. Available on: https://journals.ametsoc.org/view/journals/bams/89/12/2008bams2528_1.xml. Accessed on: Feb. 3 2020
Michalakes, J., Dudhia, J., Gill, D., Henderson, T., Klemp, J., Skamarock, W., Wang, W. (2005). The weather research and forecast model: software architecture and performance. Em: Use of high performance computing in meteorology, World Scientific, pp. 156–168.
Millman, K. J., Aivazis, M. (2011). Python for scientists and engineers. Computing in Science & Engineering, 13(2), 9–12.
Mitrani-Arenal, I., Pérez-Bello, A., Cabrales-Infante, J., Povea-Pérez, Y., Hernández-González, M., Díaz-Rodríguez, O. O. (2019). Coastal flood forecast in cuba, due to hurricanes, using a combination of numerical models. Revista Cubana de Meteorología, 25(2), 121–138.
Oliphant, T. E. (2007). Python for scientific computing. Computing in Science & Engineering, 9(3), 10–20.
Rodríguez-Genó, C. F., Sierra-Lorenzo, M., Ferrer-Hernández, A. L. (2016). Modificación e implementación del método de evaluación espacial modemod para su uso operativo en cuba. Ciencias de la Tierra y el Espacio, 17(1), 18–31.
Shchepetkin, A. F., McWilliams, J. C. (2005). The regional oceanic modeling system (roms): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean modelling, 9(4), 347–404.
Sierra-Lorenzo, M., Ferrer-Hernández, A. L., Hernández-Valdés, R., González-Mayor, Y., Cruz-Rodríguez, R. C., BorrajeroMontejo, I., Rodríguez-Genó, C. F. (2014). Sistema automático de predicción a mesoescala de cuatro ciclos diarios. Relatório Técnico, Instituto de Meteorología de Cuba.
Sierra-Lorenzo, M., Borrajero-Montejo, I., Hinojosa-Fernández, M., Roque-Carrasco, A., Rodríguez-Genó, C. F., VázquezProveyer, L., Ferrer-Hernández, A. L. (2016). Herramientas de detección, reporte y evaluación para salidas de modelos de pronóstico numérico desarrollado en cuba. Revista Cubana de Meteorología, 22(2), 150–163.
Sierra-Lorenzo, M., Borrajero-Montejo, I., Ferrer-Hernández, A. L., Hernández-Valdés, Morfa-Ávalos, Y., Morejón-Loyola, Y., Hinojosa-Fernández, M. (2017). Estudios de sensibilidad del sispi a cambios de la pbl, la cantidad de niveles verticales y, las parametrizaciones de microfísica y cúmulos, a muy alta resolución. Relatório Técnico, Instituto de Meteorología de Cuba.
Smith, R. K. (2006). Lectures on tropical cyclones.
Van Der Walt, S., Colbert, S. C., Varoquaux, G. (2011). The numpy array: a structure for efficient numerical computation. Computing in science & engineering, 13(2), 22–30.
Vázquez-Proveyer, L., Sierra-Lorenzo, M., Cruz-Rodríguez, R. C., Bezanilla-Morlot, A. (2017). Estudios de sensibilidad en la interacción numérica océano-atmósfera. Ciencias de la Tierra y el Espacio, 18(1), 59–70.
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, ˙I., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17, 261–272.
Wallcraft, A., Carroll, S., Kelly, K., Rushing, K. (2003). Hybrid coordinate ocean model (hycom) version 2.1. user’s guide. Relatório Técnico, Naval Research Lab Stennis Detachment Stennis Space Center MS.
Warner, J., Ganju, N., Sherwood, C., Kalra, T., Aretxabaleta, A., Olabarrieta, M., et al. (2019). A coupled ocean atmosphere wave sediment transport numerical modeling system (coawst): Us geological survey software. US Geological Survey: Reston, VA, USA.
Warner, J. C., Armstrong, B., He, R., Zambon, J. B. (2010). Development of a coupled ocean–atmosphere–wave–sediment transport (coawst) modeling system. Ocean modelling, 35(3), 230–244.
Weatherall, P., Marks, K. M., Jakobsson, M., Schmitt, T., Tani, S., Arndt, J. E., Rovere, M., Chayes, D., Ferrini, V., Wigley, R. (2015). A new digital bathymetric model of the world’s oceans. Earth and Space Science, 2(8), 331–345.
Wessel, P., Smith, W. H. (1996). A global, self-consistent, hierarchical, high-resolution shoreline database. Journal of Geophysical Research: Solid Earth, 101(B4), 8741–8743.
Zambon, J. B., He, R., Warner, J. C. (2014). Investigation of hurricane ivan using the coupled ocean–atmosphere–wave–sediment transport (coawst) model. Ocean Dynamics, 64(11), 1535–1554.
Downloads
Publicado
Versões
- 2022-09-22 (6)
- 2022-07-20 (5)
- 2022-07-07 (4)
- 2022-05-02 (3)
- 2022-04-08 (2)
- 2022-03-15 (1)
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 Ciência e Natura
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Para acessar a DECLARAÇÃO DE ORIGINALIDADE E EXCLUSIVIDADE E CESSÃO DE DIREITOS AUTORAIS clique aqui.
Diretrizes Éticas para Publicação de Revistas
A revista Ciência e Natura está empenhada em garantir a ética na publicação e na qualidade dos artigos.
A conformidade com padrões de comportamento ético é, portanto, esperada de todas as partes envolvidas: Autores, Editores e Revisores.
Em particular,
Autores: Os Autores devem apresentar uma discussão objetiva sobre a importância do trabalho de pesquisa, bem como detalhes e referências suficientes para permitir que outros reproduzam as experiências. Declarações fraudulentas ou intencionalmente incorretas constituem comportamento antiético e são inaceitáveis. Artigos de Revisão também devem ser objetivos, abrangentes e relatos precisos do estado da arte. Os Autores devem assegurar que seu trabalho é uma obra totalmente original, e se o trabalho e / ou palavras de outros têm sido utilizadas, isso tem sido devidamente reconhecido. O plágio em todas as suas formas constitui um comportamento publicitário não ético e é inaceitável. Submeter o mesmo manuscrito a mais de um jornal simultaneamente constitui um comportamento publicitário não ético e é inaceitável. Os Autores não devem submeter artigos que descrevam essencialmente a mesma pesquisa a mais de uma revista. O Autor correspondente deve garantir que haja um consenso total de todos os Co-autores na aprovação da versão final do artigo e sua submissão para publicação.
Editores: Os Editores devem avaliar manuscritos exclusivamente com base no seu mérito acadêmico. Um Editor não deve usar informações não publicadas na própria pesquisa do Editor sem o consentimento expresso por escrito do Autor. Os Editores devem tomar medidas de resposta razoável quando tiverem sido apresentadas queixas éticas relativas a um manuscrito submetido ou publicado.
Revisores: Todos os manuscritos recebidos para revisão devem ser tratados como documentos confidenciais. As informações ou ideias privilegiadas obtidas através da análise por pares devem ser mantidas confidenciais e não utilizadas para vantagens pessoais. As revisões devem ser conduzidas objetivamente e as observações devem ser formuladas claramente com argumentos de apoio, de modo que os Autores possam usá-los para melhorar o artigo. Qualquer Revisor selecionado que se sinta desqualificado para rever a pesquisa relatada em um manuscrito ou sabe que sua rápida revisão será impossível deve notificar o Editor e desculpar-se do processo de revisão. Os Revisores não devem considerar manuscritos nos quais tenham conflitos de interesse resultantes de relacionamentos ou conexões competitivas, colaborativas ou outras conexões com qualquer dos autores, empresas ou instituições conectadas aos documentos.