Impacts of the ocean-atmosphere coupling into the very short range prediction system, during the impact of Hurricane Matthew on Cuba
DOI:
https://doi.org/10.5902/2179460X66169Keywords:
atmospheric dynamics, sea surface temperature, Hurricane Matthew, coupled ocean-atmosphere modeling system, very short range prediction systemAbstract
The main goal of this investigation is analyzing the impact of insert the ocean-atmosphere coupling into the very short range prediction system of Cuba. The ocean-atmosphere coupled components of the Coupled Ocean-Atmosphere-Wave-Sediment Transport Modeling System are used for this purpose and the hurricane Matthew is selected as study case. Two experiments are performed: first, using a dynamic sea surface temperature, updated daily in the atmospheric model WRF; and second using a dynamic coupling between the atmospheric and an oceanic models. For the simulated track, the best results are obtained with the coupled system. The impact of coupling on the maximum wind velocities and minimum central pressure is studied. In the coupled system the sea surface temperature has more influence in the surface latent heat fluxes. Also, with this methodology the dry footprint and the behavior of the precipitation field in the presence of a hurricane are studied. This analysis shows that the hurricane acts like an open and self-sustained system in the numerical experiments. The highest differences in the precipitation simulations are in the significant convective area inside the hurricane.
Downloads
References
Ballester, M., Rubiera, J. (2016). Temporada ciclónica de 2016 en el atlántico norte. Available on: https://www.insmet.cu/asp/genesis.asp?TB0=PLANTILLAS&TB1=TEMPORADA&TB2=/Temporadas/temporada2016.html. Accessed on: Mar. 2 2021.
Bender, M. A., Ginis, I. (2000). Real-case simulations of hurricane–ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Monthly Weather Review, 128(4), 917–946.
Booij, N., Holthuijsen, L., Ris, R. (1997). The"swan"wave model for shallow water. Em: Coastal Engineering 1996, pp. 668–676.
Egbert, G. D., Erofeeva, S. Y. (2002). Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic technology, 19(2), 183–204.
Gemmill, W., Katz, B., Li, X. (2007). Daily real-time, global sea surface temperature—high-resolution analysis: Rtg_sst_hr. ncep. Relatório Técnico, EMC Tech. Rep. 260, 39 pp. Available on: http://polar.ncep.noaa.gov. Accessed on: Jan. 12 2020
Geyer, W., Sherwood, C. R., Keen, T. (2007). Community sediment transport model. Relatório Técnico, WOODS HOLE OCEANOGRAPHIC INSTITUTION MA.
Glickman, T. (2000). Glossary of Meteorology. American Meteorological Society. Available on: http://glossary.ametsoc.org/wiki/Precipitable_water. Accessed on: Mar. 2 2021.
Grell, G. A., Freitas, S. R. (2014). A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmospheric Chemistry and Physics, 14(10), 5233–5250.
Hegermiller, C. A., Warner, J. C., Olabarrieta, M., Sherwood, C. R. (2019). Wave–current interaction between hurricane matthew wave fields and the gulf stream. Journal of Physical Oceanography, 49(11), 2883–2900.
Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. IEEE Annals of the History of Computing, 9(03), 90–95.
Jones, P. W. (1999). First-and second-order conservative remapping schemes for grids in spherical coordinates. Monthly Weather Review, 127(9), 2204–2210.
Joyce, R. J., Janowiak, J. E., Arkin, P. A., Xie, P. (2004). Cmorph: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of hydrometeorology, 5(3), 487–503.
Landsea, C., Franklin, J., Beven, J. (2015). The revised atlantic hurricane database. Relatório Técnico, National Hurricane Center.
Larson, J. W., Jacob, R. L., Foster, I., Guo, J. (2001). The model coupling toolkit. Em: International Conference on Computational Science, Springer, pp. 185–194.
Lim, J. O. J., Hong, S., Dudhia, J. (2004). The wrf single-moment-microphysics scheme and its evaluation of the simulation of mesoscale convective systems. Em: 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, pp. 1–15.
Makarieva, A. M., Gorshkov, V. G., Nefiodov, A. V., Chikunov, A. V., Sheil, D., Nobre, A. D., Li, B. L. (2017). Fuel for cyclones: The water vapor budget of a hurricane as dependent on its movement. Atmospheric Research, 193, 216–230.
Maturi, E., Harris, A., Merchant, C., Mittaz, J., Potash, B., Meng, W., Sapper, J. (2008). Noaa’s sea surface temperature products from operational geostationary satellites. Bulletin of the American Meteorological Society, 89(12), 1877 – 1888. Available on: https://journals.ametsoc.org/view/journals/bams/89/12/2008bams2528_1.xml. Accessed on: Feb. 3 2020
Michalakes, J., Dudhia, J., Gill, D., Henderson, T., Klemp, J., Skamarock, W., Wang, W. (2005). The weather research and forecast model: software architecture and performance. Em: Use of high performance computing in meteorology, World Scientific, pp. 156–168.
Millman, K. J., Aivazis, M. (2011). Python for scientists and engineers. Computing in Science & Engineering, 13(2), 9–12.
Mitrani-Arenal, I., Pérez-Bello, A., Cabrales-Infante, J., Povea-Pérez, Y., Hernández-González, M., Díaz-Rodríguez, O. O. (2019). Coastal flood forecast in cuba, due to hurricanes, using a combination of numerical models. Revista Cubana de Meteorología, 25(2), 121–138.
Oliphant, T. E. (2007). Python for scientific computing. Computing in Science & Engineering, 9(3), 10–20.
Rodríguez-Genó, C. F., Sierra-Lorenzo, M., Ferrer-Hernández, A. L. (2016). Modificación e implementación del método de evaluación espacial modemod para su uso operativo en cuba. Ciencias de la Tierra y el Espacio, 17(1), 18–31.
Shchepetkin, A. F., McWilliams, J. C. (2005). The regional oceanic modeling system (roms): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean modelling, 9(4), 347–404.
Sierra-Lorenzo, M., Ferrer-Hernández, A. L., Hernández-Valdés, R., González-Mayor, Y., Cruz-Rodríguez, R. C., BorrajeroMontejo, I., Rodríguez-Genó, C. F. (2014). Sistema automático de predicción a mesoescala de cuatro ciclos diarios. Relatório Técnico, Instituto de Meteorología de Cuba.
Sierra-Lorenzo, M., Borrajero-Montejo, I., Hinojosa-Fernández, M., Roque-Carrasco, A., Rodríguez-Genó, C. F., VázquezProveyer, L., Ferrer-Hernández, A. L. (2016). Herramientas de detección, reporte y evaluación para salidas de modelos de pronóstico numérico desarrollado en cuba. Revista Cubana de Meteorología, 22(2), 150–163.
Sierra-Lorenzo, M., Borrajero-Montejo, I., Ferrer-Hernández, A. L., Hernández-Valdés, Morfa-Ávalos, Y., Morejón-Loyola, Y., Hinojosa-Fernández, M. (2017). Estudios de sensibilidad del sispi a cambios de la pbl, la cantidad de niveles verticales y, las parametrizaciones de microfísica y cúmulos, a muy alta resolución. Relatório Técnico, Instituto de Meteorología de Cuba.
Smith, R. K. (2006). Lectures on tropical cyclones.
Van Der Walt, S., Colbert, S. C., Varoquaux, G. (2011). The numpy array: a structure for efficient numerical computation. Computing in science & engineering, 13(2), 22–30.
Vázquez-Proveyer, L., Sierra-Lorenzo, M., Cruz-Rodríguez, R. C., Bezanilla-Morlot, A. (2017). Estudios de sensibilidad en la interacción numérica océano-atmósfera. Ciencias de la Tierra y el Espacio, 18(1), 59–70.
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, ˙I., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17, 261–272.
Wallcraft, A., Carroll, S., Kelly, K., Rushing, K. (2003). Hybrid coordinate ocean model (hycom) version 2.1. user’s guide. Relatório Técnico, Naval Research Lab Stennis Detachment Stennis Space Center MS.
Warner, J., Ganju, N., Sherwood, C., Kalra, T., Aretxabaleta, A., Olabarrieta, M., et al. (2019). A coupled ocean atmosphere wave sediment transport numerical modeling system (coawst): Us geological survey software. US Geological Survey: Reston, VA, USA.
Warner, J. C., Armstrong, B., He, R., Zambon, J. B. (2010). Development of a coupled ocean–atmosphere–wave–sediment transport (coawst) modeling system. Ocean modelling, 35(3), 230–244.
Weatherall, P., Marks, K. M., Jakobsson, M., Schmitt, T., Tani, S., Arndt, J. E., Rovere, M., Chayes, D., Ferrini, V., Wigley, R. (2015). A new digital bathymetric model of the world’s oceans. Earth and Space Science, 2(8), 331–345.
Wessel, P., Smith, W. H. (1996). A global, self-consistent, hierarchical, high-resolution shoreline database. Journal of Geophysical Research: Solid Earth, 101(B4), 8741–8743.
Zambon, J. B., He, R., Warner, J. C. (2014). Investigation of hurricane ivan using the coupled ocean–atmosphere–wave–sediment transport (coawst) model. Ocean Dynamics, 64(11), 1535–1554.
Downloads
Published
Versions
- 2022-09-22 (6)
- 2022-07-20 (5)
- 2022-07-07 (4)
- 2022-05-02 (3)
- 2022-04-08 (2)
- 2022-03-15 (1)
How to Cite
Issue
Section
License
Copyright (c) 2022 Ciência e Natura
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To access the DECLARATION AND TRANSFER OF COPYRIGHT AUTHOR’S DECLARATION AND COPYRIGHT LICENSE click here.
Ethical Guidelines for Journal Publication
The Ciência e Natura journal is committed to ensuring ethics in publication and quality of articles.
Conformance to standards of ethical behavior is therefore expected of all parties involved: Authors, Editors, Reviewers, and the Publisher.
In particular,
Authors: Authors should present an objective discussion of the significance of research work as well as sufficient detail and references to permit others to replicate the experiments. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. Review Articles should also be objective, comprehensive, and accurate accounts of the state of the art. The Authors should ensure that their work is entirely original works, and if the work and/or words of others have been used, this has been appropriately acknowledged. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. Authors should not submit articles describing essentially the same research to more than one journal. The corresponding Author should ensure that there is a full consensus of all Co-authors in approving the final version of the paper and its submission for publication.
Editors: Editors should evaluate manuscripts exclusively on the basis of their academic merit. An Editor must not use unpublished information in the editor's own research without the express written consent of the Author. Editors should take reasonable responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper.
Reviewers: Any manuscripts received for review must be treated as confidential documents. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should be conducted objectively, and observations should be formulated clearly with supporting arguments, so that Authors can use them for improving the paper. Any selected Reviewer who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the Editor and excuse himself from the review process. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.