Impacts of the ocean-atmosphere coupling into the very short range prediction system, during the impact of Hurricane Matthew on Cuba




atmospheric dynamics, sea surface temperature, Hurricane Matthew, coupled ocean-atmosphere modeling system, very short range prediction system


The main goal of this investigation is analyzing the impact of insert the ocean-atmosphere coupling into the very short range prediction system of Cuba. The ocean-atmosphere coupled components of the Coupled Ocean-Atmosphere-Wave-Sediment Transport Modeling System are used for this purpose and the hurricane Matthew is selected as study case. Two experiments are performed: first, using a dynamic sea surface temperature, updated daily in the atmospheric model WRF; and second using a dynamic coupling between the atmospheric and an oceanic models. For the simulated track, the best results are obtained with the coupled system. The impact of coupling on the maximum wind velocities and minimum central pressure is studied. In the coupled system the sea surface temperature has more influence in the surface latent heat fluxes. Also, with this methodology the dry footprint and the behavior of the precipitation field in the presence of a hurricane are studied. This analysis shows that the hurricane acts like an open and self-sustained system in the numerical experiments. The highest differences in the precipitation simulations are in the significant convective area inside the hurricane.


Download data is not yet available.

Author Biographies

Liset Vázquez Proveyer, Center for Atmospheric Physics, Meteorology Institute of Cuba, Havana, Cuba

BSc. on Meteorology from the University of Havana, Meteorology Specialist in the Center for Atmospheric Physics of the Cuban Institute of Meteorology, Havana, Cuba.

Maibys Sierra Lorenzo, Center for Atmospheric Physics, Meteorology Institute of Cuba, Havana, Cuba

PhD. on Mathematics Sciences from the University of Havana, Meteorology Specialist in the Center for Atmospheric Physics of the Cuban Institute of Meteorology, Havana, Cuba

Roberto Carlos Cruz Rodríguez, Department of Atmospheric Physics, National Autonomous University of Mexico, Mexico City, Mexico

Bachelor of Meteorology from the Institute of Technology and Applied Sciences, Master in mathematics from the University of Havana and PhD in earth sciences from the National Autonomous University of Mexico.

John C Warner, United States Geological Survey, Woods Hole, USA

PhD. on Civil and Environmental Engineering, Oceanographer in US Geological Survey, Coastal and Marine Hazards and Resources Program, Woods Hole Coastal and Marine Science Center.


Ballester, M., Rubiera, J. (2016). Temporada ciclónica de 2016 en el atlántico norte. Available on: Accessed on: Mar. 2 2021.

Bender, M. A., Ginis, I. (2000). Real-case simulations of hurricane–ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Monthly Weather Review, 128(4), 917–946.

Booij, N., Holthuijsen, L., Ris, R. (1997). The"swan"wave model for shallow water. Em: Coastal Engineering 1996, pp. 668–676.

Egbert, G. D., Erofeeva, S. Y. (2002). Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic technology, 19(2), 183–204.

Gemmill, W., Katz, B., Li, X. (2007). Daily real-time, global sea surface temperature—high-resolution analysis: Rtg_sst_hr. ncep. Relatório Técnico, EMC Tech. Rep. 260, 39 pp. Available on: Accessed on: Jan. 12 2020

Geyer, W., Sherwood, C. R., Keen, T. (2007). Community sediment transport model. Relatório Técnico, WOODS HOLE OCEANOGRAPHIC INSTITUTION MA.

Glickman, T. (2000). Glossary of Meteorology. American Meteorological Society. Available on: Accessed on: Mar. 2 2021.

Grell, G. A., Freitas, S. R. (2014). A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmospheric Chemistry and Physics, 14(10), 5233–5250.

Hegermiller, C. A., Warner, J. C., Olabarrieta, M., Sherwood, C. R. (2019). Wave–current interaction between hurricane matthew wave fields and the gulf stream. Journal of Physical Oceanography, 49(11), 2883–2900.

Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. IEEE Annals of the History of Computing, 9(03), 90–95.

Jones, P. W. (1999). First-and second-order conservative remapping schemes for grids in spherical coordinates. Monthly Weather Review, 127(9), 2204–2210.

Joyce, R. J., Janowiak, J. E., Arkin, P. A., Xie, P. (2004). Cmorph: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of hydrometeorology, 5(3), 487–503.

Landsea, C., Franklin, J., Beven, J. (2015). The revised atlantic hurricane database. Relatório Técnico, National Hurricane Center.

Larson, J. W., Jacob, R. L., Foster, I., Guo, J. (2001). The model coupling toolkit. Em: International Conference on Computational Science, Springer, pp. 185–194.

Lim, J. O. J., Hong, S., Dudhia, J. (2004). The wrf single-moment-microphysics scheme and its evaluation of the simulation of mesoscale convective systems. Em: 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, pp. 1–15.

Makarieva, A. M., Gorshkov, V. G., Nefiodov, A. V., Chikunov, A. V., Sheil, D., Nobre, A. D., Li, B. L. (2017). Fuel for cyclones: The water vapor budget of a hurricane as dependent on its movement. Atmospheric Research, 193, 216–230.

Maturi, E., Harris, A., Merchant, C., Mittaz, J., Potash, B., Meng, W., Sapper, J. (2008). Noaa’s sea surface temperature products from operational geostationary satellites. Bulletin of the American Meteorological Society, 89(12), 1877 – 1888. Available on: Accessed on: Feb. 3 2020

Michalakes, J., Dudhia, J., Gill, D., Henderson, T., Klemp, J., Skamarock, W., Wang, W. (2005). The weather research and forecast model: software architecture and performance. Em: Use of high performance computing in meteorology, World Scientific, pp. 156–168.

Millman, K. J., Aivazis, M. (2011). Python for scientists and engineers. Computing in Science & Engineering, 13(2), 9–12.

Mitrani-Arenal, I., Pérez-Bello, A., Cabrales-Infante, J., Povea-Pérez, Y., Hernández-González, M., Díaz-Rodríguez, O. O. (2019). Coastal flood forecast in cuba, due to hurricanes, using a combination of numerical models. Revista Cubana de Meteorología, 25(2), 121–138.

Oliphant, T. E. (2007). Python for scientific computing. Computing in Science & Engineering, 9(3), 10–20.

Rodríguez-Genó, C. F., Sierra-Lorenzo, M., Ferrer-Hernández, A. L. (2016). Modificación e implementación del método de evaluación espacial modemod para su uso operativo en cuba. Ciencias de la Tierra y el Espacio, 17(1), 18–31.

Shchepetkin, A. F., McWilliams, J. C. (2005). The regional oceanic modeling system (roms): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean modelling, 9(4), 347–404.

Sierra-Lorenzo, M., Ferrer-Hernández, A. L., Hernández-Valdés, R., González-Mayor, Y., Cruz-Rodríguez, R. C., BorrajeroMontejo, I., Rodríguez-Genó, C. F. (2014). Sistema automático de predicción a mesoescala de cuatro ciclos diarios. Relatório Técnico, Instituto de Meteorología de Cuba.

Sierra-Lorenzo, M., Borrajero-Montejo, I., Hinojosa-Fernández, M., Roque-Carrasco, A., Rodríguez-Genó, C. F., VázquezProveyer, L., Ferrer-Hernández, A. L. (2016). Herramientas de detección, reporte y evaluación para salidas de modelos de pronóstico numérico desarrollado en cuba. Revista Cubana de Meteorología, 22(2), 150–163.

Sierra-Lorenzo, M., Borrajero-Montejo, I., Ferrer-Hernández, A. L., Hernández-Valdés, Morfa-Ávalos, Y., Morejón-Loyola, Y., Hinojosa-Fernández, M. (2017). Estudios de sensibilidad del sispi a cambios de la pbl, la cantidad de niveles verticales y, las parametrizaciones de microfísica y cúmulos, a muy alta resolución. Relatório Técnico, Instituto de Meteorología de Cuba.

Smith, R. K. (2006). Lectures on tropical cyclones.

Van Der Walt, S., Colbert, S. C., Varoquaux, G. (2011). The numpy array: a structure for efficient numerical computation. Computing in science & engineering, 13(2), 22–30.

Vázquez-Proveyer, L., Sierra-Lorenzo, M., Cruz-Rodríguez, R. C., Bezanilla-Morlot, A. (2017). Estudios de sensibilidad en la interacción numérica océano-atmósfera. Ciencias de la Tierra y el Espacio, 18(1), 59–70.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, ˙I., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17, 261–272.

Wallcraft, A., Carroll, S., Kelly, K., Rushing, K. (2003). Hybrid coordinate ocean model (hycom) version 2.1. user’s guide. Relatório Técnico, Naval Research Lab Stennis Detachment Stennis Space Center MS.

Warner, J., Ganju, N., Sherwood, C., Kalra, T., Aretxabaleta, A., Olabarrieta, M., et al. (2019). A coupled ocean atmosphere wave sediment transport numerical modeling system (coawst): Us geological survey software. US Geological Survey: Reston, VA, USA.

Warner, J. C., Armstrong, B., He, R., Zambon, J. B. (2010). Development of a coupled ocean–atmosphere–wave–sediment transport (coawst) modeling system. Ocean modelling, 35(3), 230–244.

Weatherall, P., Marks, K. M., Jakobsson, M., Schmitt, T., Tani, S., Arndt, J. E., Rovere, M., Chayes, D., Ferrini, V., Wigley, R. (2015). A new digital bathymetric model of the world’s oceans. Earth and Space Science, 2(8), 331–345.

Wessel, P., Smith, W. H. (1996). A global, self-consistent, hierarchical, high-resolution shoreline database. Journal of Geophysical Research: Solid Earth, 101(B4), 8741–8743.

Zambon, J. B., He, R., Warner, J. C. (2014). Investigation of hurricane ivan using the coupled ocean–atmosphere–wave–sediment transport (coawst) model. Ocean Dynamics, 64(11), 1535–1554.



2022-03-15 — Updated on 2022-09-22


How to Cite

Proveyer, L. V., Lorenzo, M. S., Rodríguez, R. C. C., & Warner, J. C. (2022). Impacts of the ocean-atmosphere coupling into the very short range prediction system, during the impact of Hurricane Matthew on Cuba. Ciência E Natura, 44, e3. (Original work published March 15, 2022)