Influência dos padrões PDO e AMO na temperatura do ar do Brasil durante o inverno austral

Autores

DOI:

https://doi.org/10.5902/2179460X55312

Palavras-chave:

Variabilidade climática, TSM, Teleconexões, PDO, AMO

Resumo

Anomalias de temperatura da superfície do mar (TSM) favorecem o surgimento de modos de variabilidade climática, que podem ser transferidos pelas teleconexões atmosféricas para diferentes regiões do globo. O presente estudo procurou identificar influências da Oscilação Decadal do Pacífico (PDO) e da Oscilação Multidecadal do Atlântico (AMO) sobre a temperatura do ar no Brasil, durante o período de 1901 a 2012. Foi constatado que os períodos negativos da PDO e AMO (1901-2012) exercem maior influência sobre as regiões Sul e Norte do Brasil. Quando estes modos de variabilidade estão em fases opostas (1901-1927), interferem principalmente na região Sul do Brasil. Por outro lado, quando a PDO está na fase negativa e a AMO está passando da fase positiva para negativa (1944-1975), a região Norte do Brasil é mais influenciada.

Downloads

Não há dados estatísticos.

Biografia do Autor

Douglas da Silva Lindemann, Universidade Federal de Pelotas, Pelotas, RS

Graduado em Meteorologia pela Universidade Federal de Pelotas (UFPEL), Mestre em Meteorologia Agrícola pela Universidade Federal de Viçosa (UFV) e Doutor em Meteorologia Aplicada pela UFV, atualmente é bolsista de pós-doutorado no Programa de Pós-Graduação em Meteorologia da UFPEL.

Rose Ane Pereira de Freitas, Universidade Federal de Pelotas, Pelotas, RS

Graduada em Meteorologia pela Universidade Federal de Pelotas (UFPEL), Mestre em Meteorologia Agrícola pela Universidade Federal de Viçosa (UFV) e Doutora em Meteorologia pela Universidade Federal de Santa Maria (UFSM). Atualmente, é Professora Substituta Adjunta da Faculdade de Meteorologia na UFPEL.

Referências

ANDREOLI R, KAYANO M. ENSO-related rainfall anomalies in South America and associated circulation features during warm and cold Pacific Decadal Oscillation regimes. Int. J. Climatol. 2005; 25: 2017–2030.

CARVALHO L, JONES C, AMBRIZZI T. Opposite phases of the Antarctic oscillation and relationships with intraseasonal to interanual activity in the tropics during the austral summer. J. Climate. 2005; 18: 702-718.

CHANEY N, HERMAN J, REED, P, WOOD E. Flood and drought hydrologic monitoring: the role of model parameter uncertainty. Hydrol. Earth Syst. Sci. 2015; 19; 3239-3251.

CHIESSI C, MULITZA S, PÄTZOLD J, WEFER G, MARENGO J. Possible impact of the Atlantic Multidecadal Oscillation on the South American summer monsoon. Geophys. Res. Lett. 2009; 36: L21707; doi: 10.1029/2009GL039914.

COLLINS J, CHAVES R, MARQUES V. Temperature Variability over South America. J. Climate. 2009; 22: 5854-5869, doi: 10.1175/2009JCLI2551.1.

CORDEIRO A, BERLATO M, FONTANA D, ALVES R. Tendências climáticas das temperaturas do ar no Rio Grande do Sul, Sul do Brasil. RBGF. 2016; 9; 868-880.

GARREAUD R, VUILLE M, COMPAGNUCCI R, MARENGO J. Present-day South America climate. Palaeogeogr. Palaeocl. 2009; doi: 10.1016/j.paleo.2007.10.032.

GRIMM A, FERRAZ S, GOMES J. Precipitation Anomalies in Southern Brazil Associated with El Niño and La Niña Events. J. Climate. 1998; 11; 2863-2880.

JACQUES-COPER M, GARREAUD R. Characterization of the 1970s climate shift in South America. Int. J. Climatol. 2014; doi: 10.1002/joc.4120.

JONES C, CARVALHO L. The influence of the Atlantic multidecadal oscillation on the eastern Andes low-level jet and precipitation in South America. Nature. 2018; 1; doi: 10.1038/s41612-018-0050-8.

KAYANO M, SETZER A. Nearly synchronous multidecadal oscillations of surface air temperature in Punta Arenas and the Atlantic Multidecadal Oscillation index. J. Climate. 2018; 31; 7237-7248.

KNIGHT J, FOLLAND C, SCAIFE A. Climate impacts of the Atlantic Multidecadal Oscillation. Geophys. Res. Lett. 2006; 33; L17706; doi: 10.1029/2006GL026242.

LINDEMANN D, FREITAS R, RODRIGUES J, NUNES M, PINTO L. Oscilações decadais da temperatura do ar na América do Sul durante o período de verão austral e suas relações com o Oceano Atlântico Norte. RBGF. 2019; 6; 6; 2163-2176.

MYOUNG B, KIM S, KIM J, KAFATOS M. On the relationship between the North Atlantic Oscillation and early warm season temperatures in the Southwestern United States. J. Climate. 2015; 28; 5683-5698.

SOARES D, LEE H. LOIKITH P, BARKHORDARIAN A, MECHOSO C. Can significant trends be detected in surface air temperature and precipitation over South America in recent decades? Int. J. Climatol. 2016; 37; 1483-1493.

MANTUA N, HARE S, ZHANG Y, WALLACE J, FRANCIS R. A Pacific interdecadal climate oscillation with impacts on salmon production. B. Am. Meteorol. Soc. 1997; 78; 1069-1079.

MONAHAN A, FYFE J, AMBAUM M, STEPHENSON D, NORTH G. Empirical Orthogonal Functions: The Medium is the Message. J. Climate. 2009; 22; 6501-6514.

PEINGS Y, MAGNUSDOTTIR G. Forcing of the wintertime atmospheric circulation by the multidecadal fluctuations of the North Atlantic ocean. Envirom. Res. Lett. 2014; 9; doi: 10.1088/1748-9326/9/3/034018.

SHEFFIELD J, GOTETI G, WOOD E. Development of a 50-yr high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate. 2006; 19; 3088-3111.

SCHOSSLER V, SIMOES J, AQUINO F, VIANA D. Precipitation anomalies in the Brazilian southern coast related to the SAM and ENSO climate variability modes. RBRH. 2018; 23; https://doi.org/10.1590/2318-0331.231820170081.

TIMMERMANN A, LATIF M, GRÖTZNER A. Northern Hemisphere interdecadal variability: A coupled air-sea mode. J. Climate. 1998; 11; 1906-1931.

VISHNU S, FRANCIS P, SHENOI S, RAMAKRISHNA S. On the relationship between the Pacific Decadal Oscillation and monsoon depressions over the Bay of Bengal. Atmos. Sci. Lett. 2018; 19; e825.

WU Y, POLVANI L. Recent Trends in Extreme Precipitation and Temperature over Southeastern South America: The Dominant Role of Stratospheric Ozone Depletion in the CESM Large Ensemble. J. Climate. 2017; 30; 6433-6441.

ZHAI P, ZHOU B, CHEN Y. A Review of Climate Change Attribution Studies. J. Meteorol. Res. 2018; 32; 671-692.

Downloads

Publicado

2020-09-25

Como Citar

Lindemann, D. da S., & Freitas, R. A. P. de. (2020). Influência dos padrões PDO e AMO na temperatura do ar do Brasil durante o inverno austral. Ciência E Natura, 42, e11. https://doi.org/10.5902/2179460X55312