Meteorological influences on solar energy production in a coastal Amazon region
DOI:
https://doi.org/10.5902/2179460X41269Palavras-chave:
Climate change, Energetic risk, Climatic riskResumo
A study was conducted with a photovoltaic distributed generation system in São Luís, Brazil, to determine the influence of meteorological variables on the generation of energy. The methodology is composed of three stages: the first corresponds to the obtaining, organization, and treatment of the data; the second involves the application of mathematical models to determine the yield, operating temperature, nominal power, and estimated power; and the third is to generate the correlations obtained between the monitored climatic variables, whether on an hourly, daily, monthly, or annual scale. For an average temperature of 27.50ºC in March, it was verified that the ultraviolet radiation was 5.06, while the average of the total radiation was 481.01 W.m-2. The maximum peak temperature was 27.88°C at noon, while the ultraviolet radiation was 8.55 and total radiation was 794.97 W.m-2. At this average temperature variation of 0.38°C, there is a variation of 313.96 W.m-2. It is concluded that, because São Luís is very close to the equator, the conditions to produce the system are favorable, mainly because, on average, there were no abrupt changes in temperature and radiation for the period studied. Even in the wintry period, the production behaved within the parameters designed.
Downloads
Referências
ANGONESE, A. R.; Campos, A. T.; ZACARKIM, C. Eb.; MATSUO, M. S.; CUNHA, F. Energy efficiency of pig productiobbbbn system with waste treatment in biodigestor. Brazilian Journal of Agricultural and Environmental Engineering, v.10, n.3, p.745-750, 2006.
ARVIZU, D. et al. Direct Solar Energy. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2011.
BEZERRA JÚNIOR, J. T; BEZERRA JÚNIOR, J. T. The market of distribution of electric energy in Maranhão: a study on environmental proactivity, 2013.
BRAUN, P.; SANTOS, I. P.; ZOMER, C. D.; RÜTHER, R. The integration of solar photovoltaic systems at six Brazilian airports using different solar cell technologies. Brazilian Journal of Solar Energy. v.1, n.1, p.12-22, 2010.
DUBEY, S.; SARVAIYA, J. N.; SESHADRI, B. Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world - A review. Energy Procedia, v. 33, p. 311–321, 2013.
EVANS, D. L. Simplified method for predicting photovoltaic array output. Solar Energy, v. 27, pp. 555-560, Jul. 1981.
EVANS, D. L.; FLORSCHUETZ, L. W. Cost studies on terrestrial photovoltaic power systems with sunlight concentration. Solar Energy, v. 19, n. 3, p. 255-262, 1977.
FEDRIZZI, M. C.; SAUER, I.L. Photovoltaic solar pumping, historical, features and projects. University of Sao Paulo. Program Interunidades of Post-Graduation in Energy, 2002.
FERREIRA, T. D. V. G.; OLIVEIRA, L. H. D. Individual decentralized non-potable water system: the need for quality and quantity management. AmbienteConstruído, v. 18, n. 1, p. 379-392, 2018.
GARG, H.P., AGARWAL, R.K. “Some aspects of a PV/T collector/forced circulation flat plate solar water heater with solar cells”. Energy Conversion and Management, v. 36, p. 87–99, Out. 1994.
GRIFFITH, J. S.; RATHOD, N. S.; PASLASKI, J. Some tests of flat plate photovoltaic module cell temperatures in simulated field conditions. Proc. 15th IEEE PhotovoltaicSpecialists Conf. Kissimmee, EUA, p. 822-30, 1981.
GUERRA, Hélvio Neves. I Workshop OSTSEV: Operação de Sistemas Fotovoltaicos em Condições Ambientais e Climáticas. 2017.
GUERRA, S.M.G.; FANTINELLI, J.T. The approach between technology and economy: the emerging roles of energy. Journal of Social Studies. Year 3, n. 5, p.33-58, 2001.
HAMAKAWA, S.; HIBINO, T.; IWAHARA, H. Electrochemical Hydrogen Permeation in a Proton‐Hole Mixed Conductor and Its Application to a Membrane Reactor. Journal of the Electrochemical Society, v. 141, n. 7, p. 1720-1725, 1994.
HART, G. W.; RAGHURAMAN, P. Simulation of thermal aspects of residential photovoltaic systems. MIT Report DOE/ET/20279-202, 1982.
HEGEDUS, S. Review of photovoltaic module energy yield (kWh/kW): Comparison of crystalline Si and thin film technologies. Wiley Interdisciplinary Reviews: Energy and Environment, v. 2, n. 2, p. 218–233, 2013.
HERNÁNDEZ-Moro, J.; MARTÍNEZ-Duart, J. M. Analytical model for solar PV and CSP electricity costs: Present LCOE values and their future evolution. Renewable and Sustainable Energy Reviews, v. 20, p. 119-132, 2013.
LAVRATTI, Paula Cerski; PRESTES, VanescaBuzelato. Diagnosis of the legislation: identification of the norms with incidence in mitigation and adaptation to the climatic changes. Institute the right for a green planet, 2010.
MARTINS, V. S.; NOVO, E. M. L. M.; LYAPUSTIN, A.; ARAGÃO, L. E. O. C.; FREITAS, S. R.; BARBOSA, C. C. F. Seasonal and interannual assessment of cloud cover and atmospheric constituents across the Amazon (2000–2015): Insights for remote sensing and climate analysis. ISPRS Journal of Photogrammetry and Remote Sensing, v. 145, p. 309–327, 2018.
RAZIKOV, T.M; FEREKIDES, C.S.; MOREL, D.; STEFANAKOS, E.; HULLAL, H.S.; UPADHYAYA, H.M. Solar photovoltaic electricity: Current status and future prospects. Solar Energy, v. 85, p. 1580-1608, 2011.
SALLA, D. A.; FURLANETO, F.P.B.; CABELLO, C.; KANTHACK, R.A.D. Energy analysis of cassava ethanol production systems (Manihot esculenta Crantz). Brazilian Journal of Agricultural and Environmental Engineering, v.14, n. 4, p. 444-448, 2010.
SANO, E. E.; FERREIRA, L. G.; ASNER, G. P.; STEINKE, E. T. Spatial and temporal probabilities of obtaining cloud‐free Landsat images over the Brazilian tropical savanna. International Journal of Remote Sensing, v. 28, n. 12, 2739–2752, 2007.
SCHULER, M.; GREEN, D. R. Mechanisms of p53-dependent apoptosis, 2001.
SILVA, F. B.; SANTOS, J. R. N.; FEITOSA, F. E. C. S.; SILVA, I. D. C.; ARAÚJO, M. D.; GUTERRES, C. E.; NERES, R. L. Evidências de mudanças climáticas na região de transição Amazônia-Cerrado no estado do Maranhão. Revista Brasileira de Meteorologia, v. 31, n. 3, p. 330-336, 2016.
SINGH, P.; RAVINDRA, N.M., Temperaturedependenceof solar cell performance ananalysis. Solar Energy Materials & Solar Cells, v. 101, p. 36–45, 2012.
SKOPLAKI, E.; BOUDOUVIS, A.G.; PALYVOS, J.A. A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting. Solar Energy Materials & Solar Cells, v. 92, p. 1393– 1402, Mai. 2008.
SKOPLAKI, E.; PALYVOS, J.A. On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Solar Energy, v. 83, n. 5, p. 614–624, Mai. 2009.
SKOPLAKI, E.; PALYVOS, J.A. Operating temperature of photovoltaic modules: A survey of pertinent correlations. Renewable Energy, v. 34, p. 23–29, Jun. 2008.
SOUSA, T.A.; PREGITZER R.L.; MARTINS, J.S.; AFONSO, J.L. Study of the Panorama of Renewable Energy in the European Union and Suggestions for Portugal. Conference on RenewableEnergiesandEnvironment in Portugal Figueira da Foz, Portugal, p. 1.87-1.92. 201. 2015.
TOLMASQUIM, Mauricio T.; GORINI, Ricardo. Brazilian energy matrix: a prospective. New studies. - CEBRAP, São Paulo, n. 79, p. 47-69, Nov. 2007.
TRIGOSO, F.M.; QUAGLIA, R. B.; MORAES, A. M.; OLIVEIRA, S.H.F. Panorama of distributed generation in Brazil based on the use of Photovoltaic Solar technology. Revista Brasileira de Energia Solar, v. 1, n. 2, p. 127-138, 2010.
VEISSID, Nelson; BARUEL, Mário Ferreira. Solar Energy and its Application in Satellites. São José dos Campos: SindCT, 2012. Available at www.sindct.org.br/files/celulassolares.pdf. Accessed 05/02/2018.
VON ROEDERN, B.; KENNETH, Zweibel; HARIN, S. Ullal. The role of polycrystalline thin-film PV technologies for achieving midterm market-competitive PV modules. Photovoltaic Specialists Conference, 2005. Conference Record of the Thirty-first IEEE. IEEE, 2005.
ZOLPER, J. C.; NARAYANAN, S.; WENHAM, S. R.; GREEN, M. A. 16.7% efficient, laser textured, buried contact polycrystalline silicon solar cell. AppliedPhysicsLetters, v. 55, n. 22, p. 2363-2365, 1989.
Downloads
Publicado
Versões
- 2022-06-21 (2)
- 2020-12-31 (1)
Como Citar
Edição
Seção
Licença
Copyright (c) 2020 Ciência e Natura
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Para acessar a DECLARAÇÃO DE ORIGINALIDADE E EXCLUSIVIDADE E CESSÃO DE DIREITOS AUTORAIS clique aqui.
Diretrizes Éticas para Publicação de Revistas
A revista Ciência e Natura está empenhada em garantir a ética na publicação e na qualidade dos artigos.
A conformidade com padrões de comportamento ético é, portanto, esperada de todas as partes envolvidas: Autores, Editores e Revisores.
Em particular,
Autores: Os Autores devem apresentar uma discussão objetiva sobre a importância do trabalho de pesquisa, bem como detalhes e referências suficientes para permitir que outros reproduzam as experiências. Declarações fraudulentas ou intencionalmente incorretas constituem comportamento antiético e são inaceitáveis. Artigos de Revisão também devem ser objetivos, abrangentes e relatos precisos do estado da arte. Os Autores devem assegurar que seu trabalho é uma obra totalmente original, e se o trabalho e / ou palavras de outros têm sido utilizadas, isso tem sido devidamente reconhecido. O plágio em todas as suas formas constitui um comportamento publicitário não ético e é inaceitável. Submeter o mesmo manuscrito a mais de um jornal simultaneamente constitui um comportamento publicitário não ético e é inaceitável. Os Autores não devem submeter artigos que descrevam essencialmente a mesma pesquisa a mais de uma revista. O Autor correspondente deve garantir que haja um consenso total de todos os Co-autores na aprovação da versão final do artigo e sua submissão para publicação.
Editores: Os Editores devem avaliar manuscritos exclusivamente com base no seu mérito acadêmico. Um Editor não deve usar informações não publicadas na própria pesquisa do Editor sem o consentimento expresso por escrito do Autor. Os Editores devem tomar medidas de resposta razoável quando tiverem sido apresentadas queixas éticas relativas a um manuscrito submetido ou publicado.
Revisores: Todos os manuscritos recebidos para revisão devem ser tratados como documentos confidenciais. As informações ou ideias privilegiadas obtidas através da análise por pares devem ser mantidas confidenciais e não utilizadas para vantagens pessoais. As revisões devem ser conduzidas objetivamente e as observações devem ser formuladas claramente com argumentos de apoio, de modo que os Autores possam usá-los para melhorar o artigo. Qualquer Revisor selecionado que se sinta desqualificado para rever a pesquisa relatada em um manuscrito ou sabe que sua rápida revisão será impossível deve notificar o Editor e desculpar-se do processo de revisão. Os Revisores não devem considerar manuscritos nos quais tenham conflitos de interesse resultantes de relacionamentos ou conexões competitivas, colaborativas ou outras conexões com qualquer dos autores, empresas ou instituições conectadas aos documentos.