Synthesis and antimicrobial activity of iron oxide/silver nanocomposites against Pseudomonas aeruginosa biofilms
DOI:
https://doi.org/10.5902/2179460X84264Keywords:
Colloidal dispersion, Heterodimer, Artemia salinaAbstract
Pseudomonas aeruginosa are known for their pathogenicity, antimicrobial resistance, and ability to grow in biofilms, making them even more problematic in health care. In this context, nanotechnology allows the development of new materials against multiresistant microorganisms. The present study prepared colloidal dispersions of iron oxide (IONPs) and silver (AgNPs) nanoparticles and iron oxide/silver composite (IO/Ag-NC), testing them for toxicity and activity against biofilms of P. aeruginosa clinical isolates. Heterodimer nanocomposites showed spherical morphology and zeta potential, indicating relative colloidal stability despite their polydispersity. The nanoparticles did not present toxicity to Artemia salina at the tested concentrations and inhibited the biofilm formation of some P. aeruginosa clinical isolates. Nanoparticles (NPs) inhibited the biofilm formation of some P. aeruginosa clinical isolates: AgNPs inhibited biofilm formation in three isolates, IONPs reduced it in four, and IO/Ag-NCs inhibited it in three P. aeruginosa isolates. Further research should focus on strategies that consider increasing silver concentration and using IO/Ag-NCs as nanocarriers for controlling microbial biofilm formation.
Downloads
References
An, H. J., Sarkheil, M., Park, H. S., Yu, I. J., & Johari, S. A. (2019). Comparative toxicity of silver nanoparticles (AgNPs) and silver nanowires (AgNWs) on saltwater microcrustacean, Artemia salina. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 218. https://doi.org/10.1016/j.cbpc.2019.01.002 DOI: https://doi.org/10.1016/j.cbpc.2019.01.002
Armijo, L. M., Wawrzyniec, S. J., Kopciuch, M., Brandt, Y. I., Rivera, A. C., Withers, N. J., Cook, N. C., Huber, D. L., Monson, T. C., Smyth, H. D. C., & Osiński, M. (2020). Antibacterial activity of iron oxide, iron nitride, and tobramycin conjugated nanoparticles against Pseudomonas aeruginosa biofilms. Journal of Nanobiotechnology, 18(1). https://doi.org/10.1186/s12951-020-0588-6 DOI: https://doi.org/10.1186/s12951-020-0588-6
Aziz, Khalid, M., Akhtar, M. S., Nadeem, M., Gilani, Z. A., Ul Huda Khan Asghar, H. M. N., Rehman, J., Ullah, Z., & Saleem, M. (2018). Structural, morphological and optical investigations of silver nanoparticles synthesized by sol-gel auto-combustion method. Journal of Nanomaterials and Biostructures, 13(3).
Basak, S., Ali, S., Das, D., Mondal, M., Dutta, A., Kumar, A., Sikdar, S., & Roy, M. N. (2021). Green Synthesis of Iron Oxide Nanoparticles to Explore Cytotoxic Behaviour and to Diminish Environmental Pollution by a Novel Contrivance. Journal of Chemical, Biological and physical sciences, 11(1), 147–170. https://doi.org/10.24214/jcbps.A.11.1.14770 DOI: https://doi.org/10.24214/jcbps.A.11.1.14770
Bhattacharjee, S. (2016). DLS and zeta potential–what they are and what they are not? Journal of controlled release, 235, 337–351. DOI: https://doi.org/10.1016/j.jconrel.2016.06.017
Boucher, H. W., Talbot, G. H., Benjamin Jr, D. K., Bradley, J., Guidos, R. J., Jones, R. N., Murray, B. E., Bonomo, R. A., Gilbert, D., & America, I. D. S. of. (2013). 10×’20 progress—development of new drugs active against gram-negative bacilli: an update from the Infectious Diseases Society of America. Clinical infectious diseases, 56(12), 1685–1694. DOI: https://doi.org/10.1093/cid/cit152
Bruckmann, F. da S., Viana, A. R., Lopes, L. Q. S., Santos, R. C. V., Muller, E. I., Mortari, S. R., & Rhoden, C. R. B. (2022). Synthesis, Characterization, and Biological Activity Evaluation of Magnetite-Functionalized Eugenol. Journal of Inorganic and Organometallic Polymers and Materials, 32(4), 1459–1472. https://doi.org/10.1007/s10904-021-02207-7
Caro, C., Sayagues, M. J., Franco, V., Conde, A., Zaderenko, P., & Gámez, F. (2016). A hybrid silver-magnetite detector based on surface enhanced Raman scattering for differentiating organic compounds. Sensors and Actuators B: Chemical, 228, 124–133. DOI: https://doi.org/10.1016/j.snb.2016.01.003
Chen, Y., Gao, N., & Jiang, J. (2013). Surface matters: Enhanced bactericidal property of core-shell Ag-Fe2O3 nanostructures to their heteromer counterparts from one-pot synthesis. Small, 9(19). https://doi.org/10.1002/smll.201300543 DOI: https://doi.org/10.1002/smll.201300543
da Silva Bruckmann, F., Viana, A. R., Lopes, L. Q. S., Santos, R. C. V., Muller, E. I., Mortari, S. R., & Rhoden, C. R. B. (2022). Synthesis, Characterization, and Biological Activity Evaluation of Magnetite-Functionalized Eugenol. Journal of Inorganic and Organometallic Polymers and Materials, 32(4), 1459–1472. https://doi.org/10.1007/s10904-021-02207-7 DOI: https://doi.org/10.1007/s10904-021-02207-7
de Lacerda Coriolano, D., de Souza, J. B., Bueno, E. V., Medeiros, S. M. de F. R., Cavalcanti, I. D. L., & Cavalcanti, I. M. F. (2021). Antibacterial and antibiofilm potential of silver nanoparticles against antibiotic-sensitive and multidrug-resistant Pseudomonas aeruginosa strains. Brazilian Journal of Microbiology, 52(1), 267–278. https://doi.org/10.1007/s42770-020-00406-x DOI: https://doi.org/10.1007/s42770-020-00406-x
Diniz, F. R., Maia, R. C. A. P., de Andrade, L. R. M., Andrade, L. N., Vinicius Chaud, M., da Silva, C. F., Corrêa, C. B., de Albuquerque Junior, R. L. C., Pereira da Costa, L., & Shin, S. R. (2020). Silver nanoparticles-composing alginate/gelatine hydrogel improves wound healing in vivo. Nanomaterials, 10(2), 390. DOI: https://doi.org/10.3390/nano10020390
Galateanu, B., Bunea, M.-C., Stanescu, P., Vasile, E., Casarica, A., Iovu, H., Hermenean, A., Zaharia, C., & Costache, M. (2015). In vitro studies of bacterial cellulose and magnetic nanoparticles smart nanocomposites for efficient chronic wounds healing. Stem cells international, 2015. DOI: https://doi.org/10.1155/2015/195096
Hadi, A. A., Nizam, A., Malek, N., Matmin, J., Asraf, M. H., Susanto, H., Din, S. M., & Shamsuddin, M. (2024). Synergistic antibacterial effect of Persicaria odorata synthesised silver nanoparticles with antibiotics on drug-resistant bacteria. Inorganic Chemistry Communications, 159, 111725. https://doi.org/10.1016/j.inoche.2023.111725 DOI: https://doi.org/10.1016/j.inoche.2023.111725
Hemmati, F., Salehi, R., Ghotaslou, R., Kafil, H. S., Hasani, A., Gholizadeh, P., & Rezaee, M. A. (2020). The assessment of antibiofilm activity of chitosan-zinc oxide-gentamicin nanocomposite on Pseudomonas aeruginosa and Staphylococcus aureus. International Journal of Biological Macromolecules, 163, 2248–2258. DOI: https://doi.org/10.1016/j.ijbiomac.2020.09.037
Ismail, R. A., Sulaiman, G. M., Abdulrahman, S. A., & Marzoog, T. R. (2015). Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid. https://doi.org/10.1016/j.msec.2015.04.047 DOI: https://doi.org/10.1016/j.msec.2015.04.047
ISO, I. S. O. (2017). 22412: 2017 Particle size analysis—Dynamic light scattering (DLS). International Organization for Standardization: Geneva, Switzerland.
Karimzadeh, I., Dizaji, H. R., & Aghazadeh, M. (2016). Preparation, characterization and PEGylation of superparamagnetic Fe3O4 nanoparticles from ethanol medium via cathodic electrochemical deposition (CED) method. Materials Research Express, 3(9), 095022. DOI: https://doi.org/10.1088/2053-1591/3/9/095022
Kereselidze, Z., Romero, V. H., Peralta, X. G., & Santamaria, F. (2012). Gold nanostar synthesis with a silver seed mediated growth method. JoVE (Journal of Visualized Experiments), 59, e3570. DOI: https://doi.org/10.3791/3570
Khalafalla, S., & Reimers, G. (1980). Preparation of dilution-stable aqueous magnetic fluids. IEEE Transactions on Magnetics, 16(2), 178–183. https://doi.org/10.1109/TMAG.1980.1060578 DOI: https://doi.org/10.1109/TMAG.1980.1060578
Kim, K.-H., Xing, H., Zuo, J.-M., Zhang, P., & Wang, H. (2015). TEM based high resolution and low-dose scanning electron nanodiffraction technique for nanostructure imaging and analysis. Micron, 71, 39–45. DOI: https://doi.org/10.1016/j.micron.2015.01.002
Krishnaraju, A. V, Rao, T. V. N., Sundararaju, D., Vanisree, M., Tsay, H.-S., & Subbaraju, G. V. (2005). Assessment of bioactivity of Indian medicinal plants using brine shrimp (Artemia salina) lethality assay. International Journal of Applied Science and Engineering, 3(2), 125–134.
Kumar, B., Smita, K., Cumbal, L., & Debut, A. (2014). Biogenic synthesis of iron oxide nanoparticles for 2-arylbenzimidazole fabrication. Journal of Saudi Chemical Society, 18(4), 364–369. DOI: https://doi.org/10.1016/j.jscs.2014.01.003
Liao, S., Zhang, Y., Pan, X., Zhu, F., Jiang, C., Liu, Q., Cheng, Z., Dai, G., Wu, G., & Wang, L. (2019). Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. International journal of nanomedicine, 1469–1487. DOI: https://doi.org/10.2147/IJN.S191340
Litter, M. I., & Blesa, M. A. (1992). Photodissolution of iron oxides. IV. A comparative study on the photodissolution of hematite, magnetite, and maghemite in EDTA media. Canadian Journal of Chemistry, 70(9), 2502–2510. DOI: https://doi.org/10.1139/v92-316
Liu, C. H., Zhou, Z. D., Yu, X., Lv, B. Q., Mao, J. F., & Xiao, D. (2008). Preparation and characterization of Fe3O4/Ag composite magnetic nanoparticles. Inorganic materials, 44, 291–295. DOI: https://doi.org/10.1134/S002016850803014X
Loureiro, R. J., Roque, F., Rodrigues, A. T., Herdeiro, M. T., & Ramalheira, E. (2016). O uso de antibióticos e as resistências bacterianas: breves notas sobre a sua evolução. Revista Portuguesa de saúde pública, 34(1), 77–84. DOI: https://doi.org/10.1016/j.rpsp.2015.11.003
Luna, J. de S., Dos Santos, A. F., De Lima, M. R. F., De Omena, M. C., De Mendonça, F. A. C., Bieber, L. W., & Sant’Ana, A. E. G. (2005). A study of the larvicidal and molluscicidal activities of some medicinal plants from northeast Brazil. Journal of Ethnopharmacology, 97(2), 199–206. DOI: https://doi.org/10.1016/j.jep.2004.10.004
Maheshwari, S. (2024). Synergistic effects of Woodfordia fruticosa silver nanoparticles accelerating wound healing in Swiss mice in vivo. Intelligent Pharmacy, 2(1), 17–27. DOI: https://doi.org/10.1016/j.ipha.2023.09.005
Makowski, M., Silva, Í. C., Pais do Amaral, C., Gonçalves, S., & Santos, N. C. (2019). Advances in lipid and metal nanoparticles for antimicrobial peptide delivery. Pharmaceutics, 11(11), 588. DOI: https://doi.org/10.3390/pharmaceutics11110588
Mehtab, S., Zaidi, M. G. H., & Irshad Siddiqi, T. (2018). Designing Fructose Stabilized Silver Nanoparticles for Mercury(II) Detection and Potential Antibacterial Agents. Material Science Research India, 15(3), 241–249. https://doi.org/10.13005/msri/150305 DOI: https://doi.org/10.13005/msri/150305
Molina-Salinas, G. M., & Said-Fernández, S. (2006). A modified microplate cytotoxicity assay with brine shrimp larvae (Artemia salina). Pharmacologyonline, 3, 633–638.
Naves, P., del Prado, G., Huelves, L., Gracia, M., Ruiz, V., Blanco, J., Dahbi, G., Blanco, M., del Carmen Ponte, M., & Soriano, F. (2008). Correlation between virulence factors and in vitro biofilm formation by Escherichia coli strains. Microbial pathogenesis, 45(2), 86–91. DOI: https://doi.org/10.1016/j.micpath.2008.03.003
Njagi, E. C., Huang, H., Stafford, L., Genuino, H., Galindo, H. M., Collins, J. B., Hoag, G. E., & Suib, S. L. (2011). Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir, 27(1), 264–271. DOI: https://doi.org/10.1021/la103190n
Noval, V. E., & Carriazo, J. G. (2019). Fe3O4-TiO2 and Fe3O4-SiO2 core-shell powders synthesized from industrially processed magnetite (Fe3O4) microparticles. Materials Research, 22, e20180660. DOI: https://doi.org/10.1590/1980-5373-mr-2018-0660
Ntungwe N, E., Domínguez-Martín, E. M., Roberto, A., Tavares, J., Isca, V., Pereira, P., Cebola, M.-J., & Rijo, P. (2020). Artemia species: An important tool to screen general toxicity samples. Current Pharmaceutical Design, 26(24), 2892–2908. DOI: https://doi.org/10.2174/1381612826666200406083035
Pavia, D. L., Lampman, G. M., Kriz, G. S., & Vyvyan, J. R. (2010). Introdução à espectroscopia: Tradução da 4a edição Norte-Americana. Em P. Barros (Org.), São Paulo: Cengage Learning (4o ed). Cengage Learning.
Pisutthanan, S., Plianbangchang, P., Pisutthanan, N., Ruanruay, S., & Muanrit, O. (2004). Brine shrimp lethality activity of Thai medicinal plants in the family Meliaceae. Naresuan University Journal: Science and Technology (NUJST), 12(2), 13–18.
Prabhu, S., & Poulose, E. K. (2012). Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International nano letters, 2, 1–10. DOI: https://doi.org/10.1186/2228-5326-2-32
Ribeiro, K. L., Frías, I. A. M., Franco, O. L., Dias, S. C., Sousa-Junior, A. A., Silva, O. N., Bakuzis, A. F., Oliveira, M. D. L., & Andrade, C. A. S. (2018). Clavanin A-bioconjugated Fe3O4/Silane core-shell nanoparticles for thermal ablation of bacterial biofilms. Colloids and Surfaces B: Biointerfaces, 169, 72–81. DOI: https://doi.org/10.1016/j.colsurfb.2018.04.055
Sallam, S. A., El-Subruiti, G. M., & Eltaweil, A. S. (2018). Facile synthesis of Ag–γ-Fe2 O3 superior nanocomposite for catalytic reduction of nitroaromatic compounds and catalytic degradation of methyl orange. Catalysis Letters, 148, 3701–3714. DOI: https://doi.org/10.1007/s10562-018-2569-z
Sathyanarayanan, M. B., Balachandranath, R., Genji Srinivasulu, Y., Kannaiyan, S. K., & Subbiahdoss, G. (2013). The effect of gold and iron-oxide nanoparticles on biofilm-forming pathogens. International Scholarly Research Notices, 2013. DOI: https://doi.org/10.1155/2013/272086
Sharma, G., & Jeevanandam, P. (2013). A facile synthesis of multifunctional iron oxide@ Ag core–shell nanoparticles and their catalytic applications. European Journal of Inorganic Chemistry, 2013(36), 6126–6136. DOI: https://doi.org/10.1002/ejic.201301193
Shervani, Z., Ikushima, Y., Sato, M., Kawanami, H., Hakuta, Y., Yokoyama, T., Nagase, T., Kuneida, H., & Aramaki, K. (2008). Morphology and size-controlled synthesis of silver nanoparticles in aqueous surfactant polymer solutions. Colloid and Polymer Science, 286, 403–410. DOI: https://doi.org/10.1007/s00396-007-1784-8
Sonbol, H., Mohammed, A. E., & Korany, S. M. (2022). Soil fungi as biomediator in silver nanoparticles formation and antimicrobial efficacy. International Journal of Nanomedicine, 2843–2863. DOI: https://doi.org/10.2147/IJN.S356724
Stepanović, S., Vuković, D., Dakić, I., Savić, B., & Švabić-Vlahović, M. (2000). A modified microtiter-plate test for quantification of staphylococcal biofilm formation. Journal of microbiological methods, 40(2), 175–179. DOI: https://doi.org/10.1016/S0167-7012(00)00122-6
Tun, W. S. T., Hongsing, N., Sirithongsuk, P., Nasompak, S., Daduang, S., Klaynongsruang, S., Taweechaisupapong, S., Chareonsudjai, S., Prangkio, P., & Kosolwattana, S. (2024). The synergistic action of silver nanoparticles and ceftazidime against antibiotic-resistant Burkholderia pseudomallei: A modifying treatment. Process Biochemistry, 136, 351–361. DOI: https://doi.org/10.1016/j.procbio.2023.11.016
Wang, F., Yin, C., Wei, X., Wang, Q., Cui, L., Wang, Y., Li, T., & Li, J. (2014). Synthesis and characterization of superparamagnetic Fe3O4nanoparticles modified with oleic acid. Integrated Ferroelectrics, 153(1), 92–101. DOI: https://doi.org/10.1080/10584587.2014.903062
Zamperini, C., Maccari, G., Deodato, D., Pasero, C., D’Agostino, I., Orofino, F., De Luca, F., Dreassi, E., Docquier, J.-D., & Botta, M. (2017). Identification, synthesis and biological activity of alkyl-guanidine oligomers as potent antibacterial agents. Scientific reports, 7(1), 8251. DOI: https://doi.org/10.1038/s41598-017-08749-6
Zhang, Y., Pan, X., Liao, S., Jiang, C., Wang, L., Tang, Y., Wu, G., Dai, G., & Chen, L. (2020). Quantitative proteomics reveals the mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa biofilms. Journal of proteome research, 19(8), 3109–3122. DOI: https://doi.org/10.1021/acs.jproteome.0c00114
Zhao, X., Zhu, S., Song, Y., Zhang, J., & Yang, B. (2015). Thermal responsive fluorescent nanocomposites based on carbon dots. RSC advances, 5(20), 15187–15193. DOI: https://doi.org/10.1039/C4RA13417F
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ciência e Natura

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To access the DECLARATION AND TRANSFER OF COPYRIGHT AUTHOR’S DECLARATION AND COPYRIGHT LICENSE click here.
Ethical Guidelines for Journal Publication
The Ciência e Natura journal is committed to ensuring ethics in publication and quality of articles.
Conformance to standards of ethical behavior is therefore expected of all parties involved: Authors, Editors, Reviewers, and the Publisher.
In particular,
Authors: Authors should present an objective discussion of the significance of research work as well as sufficient detail and references to permit others to replicate the experiments. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. Review Articles should also be objective, comprehensive, and accurate accounts of the state of the art. The Authors should ensure that their work is entirely original works, and if the work and/or words of others have been used, this has been appropriately acknowledged. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. Authors should not submit articles describing essentially the same research to more than one journal. The corresponding Author should ensure that there is a full consensus of all Co-authors in approving the final version of the paper and its submission for publication.
Editors: Editors should evaluate manuscripts exclusively on the basis of their academic merit. An Editor must not use unpublished information in the editor's own research without the express written consent of the Author. Editors should take reasonable responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper.
Reviewers: Any manuscripts received for review must be treated as confidential documents. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should be conducted objectively, and observations should be formulated clearly with supporting arguments, so that Authors can use them for improving the paper. Any selected Reviewer who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the Editor and excuse himself from the review process. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.


