Synthesis and antimicrobial activity of iron oxide/silver nanocomposites against Pseudomonas aeruginosa biofilms

Authors

DOI:

https://doi.org/10.5902/2179460X84264

Keywords:

Colloidal dispersion, Heterodimer, Artemia salina

Abstract

Pseudomonas aeruginosa are known for their pathogenicity, antimicrobial resistance, and ability to grow in biofilms, making them even more problematic in health care. In this context, nanotechnology allows the development of new materials against multiresistant microorganisms. The present study prepared colloidal dispersions of iron oxide (IONPs) and silver (AgNPs) nanoparticles and iron oxide/silver composite (IO/Ag-NC), testing them for toxicity and activity against biofilms of P. aeruginosa clinical isolates. Heterodimer nanocomposites showed spherical morphology and zeta potential, indicating relative colloidal stability despite their polydispersity. The nanoparticles did not present toxicity to Artemia salina at the tested concentrations and inhibited the biofilm formation of some P. aeruginosa clinical isolates. Nanoparticles (NPs) inhibited the biofilm formation of some P. aeruginosa clinical isolates: AgNPs inhibited biofilm formation in three isolates, IONPs reduced it in four, and IO/Ag-NCs inhibited it in three P. aeruginosa isolates. Further research should focus on strategies that consider increasing silver concentration and using IO/Ag-NCs as nanocarriers for controlling microbial biofilm formation.

Downloads

Download data is not yet available.

Author Biographies

Aline Fernandes Barcelos, Universidade Estadual de Goiás

Master in Sciences Applied to Health Products.

Alliny das Graças Amaral, Universidade Estadual de Goiás

PhD in Animal Science.

Lílian Carla Carneiro, Universidade Federal de Goiás

PhD in Cellular and Molecular Biology.

Plínio Lázaro Faleiro Naves, Universidade Estadual de Goiás

PhD in Microbiology and Parasitology.

Luciana Rebelo Guilherme, Universidade Estadual de Goiás

PhD in Inorganic Chemistry.

References

An, H. J., Sarkheil, M., Park, H. S., Yu, I. J., & Johari, S. A. (2019). Comparative toxicity of silver nanoparticles (AgNPs) and silver nanowires (AgNWs) on saltwater microcrustacean, Artemia salina. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 218. https://doi.org/10.1016/j.cbpc.2019.01.002 DOI: https://doi.org/10.1016/j.cbpc.2019.01.002

Armijo, L. M., Wawrzyniec, S. J., Kopciuch, M., Brandt, Y. I., Rivera, A. C., Withers, N. J., Cook, N. C., Huber, D. L., Monson, T. C., Smyth, H. D. C., & Osiński, M. (2020). Antibacterial activity of iron oxide, iron nitride, and tobramycin conjugated nanoparticles against Pseudomonas aeruginosa biofilms. Journal of Nanobiotechnology, 18(1). https://doi.org/10.1186/s12951-020-0588-6 DOI: https://doi.org/10.1186/s12951-020-0588-6

Aziz, Khalid, M., Akhtar, M. S., Nadeem, M., Gilani, Z. A., Ul Huda Khan Asghar, H. M. N., Rehman, J., Ullah, Z., & Saleem, M. (2018). Structural, morphological and optical investigations of silver nanoparticles synthesized by sol-gel auto-combustion method. Journal of Nanomaterials and Biostructures, 13(3).

Basak, S., Ali, S., Das, D., Mondal, M., Dutta, A., Kumar, A., Sikdar, S., & Roy, M. N. (2021). Green Synthesis of Iron Oxide Nanoparticles to Explore Cytotoxic Behaviour and to Diminish Environmental Pollution by a Novel Contrivance. Journal of Chemical, Biological and physical sciences, 11(1), 147–170. https://doi.org/10.24214/jcbps.A.11.1.14770 DOI: https://doi.org/10.24214/jcbps.A.11.1.14770

Bhattacharjee, S. (2016). DLS and zeta potential–what they are and what they are not? Journal of controlled release, 235, 337–351. DOI: https://doi.org/10.1016/j.jconrel.2016.06.017

Boucher, H. W., Talbot, G. H., Benjamin Jr, D. K., Bradley, J., Guidos, R. J., Jones, R. N., Murray, B. E., Bonomo, R. A., Gilbert, D., & America, I. D. S. of. (2013). 10×’20 progress—development of new drugs active against gram-negative bacilli: an update from the Infectious Diseases Society of America. Clinical infectious diseases, 56(12), 1685–1694. DOI: https://doi.org/10.1093/cid/cit152

Bruckmann, F. da S., Viana, A. R., Lopes, L. Q. S., Santos, R. C. V., Muller, E. I., Mortari, S. R., & Rhoden, C. R. B. (2022). Synthesis, Characterization, and Biological Activity Evaluation of Magnetite-Functionalized Eugenol. Journal of Inorganic and Organometallic Polymers and Materials, 32(4), 1459–1472. https://doi.org/10.1007/s10904-021-02207-7

Caro, C., Sayagues, M. J., Franco, V., Conde, A., Zaderenko, P., & Gámez, F. (2016). A hybrid silver-magnetite detector based on surface enhanced Raman scattering for differentiating organic compounds. Sensors and Actuators B: Chemical, 228, 124–133. DOI: https://doi.org/10.1016/j.snb.2016.01.003

Chen, Y., Gao, N., & Jiang, J. (2013). Surface matters: Enhanced bactericidal property of core-shell Ag-Fe2O3 nanostructures to their heteromer counterparts from one-pot synthesis. Small, 9(19). https://doi.org/10.1002/smll.201300543 DOI: https://doi.org/10.1002/smll.201300543

da Silva Bruckmann, F., Viana, A. R., Lopes, L. Q. S., Santos, R. C. V., Muller, E. I., Mortari, S. R., & Rhoden, C. R. B. (2022). Synthesis, Characterization, and Biological Activity Evaluation of Magnetite-Functionalized Eugenol. Journal of Inorganic and Organometallic Polymers and Materials, 32(4), 1459–1472. https://doi.org/10.1007/s10904-021-02207-7 DOI: https://doi.org/10.1007/s10904-021-02207-7

de Lacerda Coriolano, D., de Souza, J. B., Bueno, E. V., Medeiros, S. M. de F. R., Cavalcanti, I. D. L., & Cavalcanti, I. M. F. (2021). Antibacterial and antibiofilm potential of silver nanoparticles against antibiotic-sensitive and multidrug-resistant Pseudomonas aeruginosa strains. Brazilian Journal of Microbiology, 52(1), 267–278. https://doi.org/10.1007/s42770-020-00406-x DOI: https://doi.org/10.1007/s42770-020-00406-x

Diniz, F. R., Maia, R. C. A. P., de Andrade, L. R. M., Andrade, L. N., Vinicius Chaud, M., da Silva, C. F., Corrêa, C. B., de Albuquerque Junior, R. L. C., Pereira da Costa, L., & Shin, S. R. (2020). Silver nanoparticles-composing alginate/gelatine hydrogel improves wound healing in vivo. Nanomaterials, 10(2), 390. DOI: https://doi.org/10.3390/nano10020390

Galateanu, B., Bunea, M.-C., Stanescu, P., Vasile, E., Casarica, A., Iovu, H., Hermenean, A., Zaharia, C., & Costache, M. (2015). In vitro studies of bacterial cellulose and magnetic nanoparticles smart nanocomposites for efficient chronic wounds healing. Stem cells international, 2015. DOI: https://doi.org/10.1155/2015/195096

Hadi, A. A., Nizam, A., Malek, N., Matmin, J., Asraf, M. H., Susanto, H., Din, S. M., & Shamsuddin, M. (2024). Synergistic antibacterial effect of Persicaria odorata synthesised silver nanoparticles with antibiotics on drug-resistant bacteria. Inorganic Chemistry Communications, 159, 111725. https://doi.org/10.1016/j.inoche.2023.111725 DOI: https://doi.org/10.1016/j.inoche.2023.111725

Hemmati, F., Salehi, R., Ghotaslou, R., Kafil, H. S., Hasani, A., Gholizadeh, P., & Rezaee, M. A. (2020). The assessment of antibiofilm activity of chitosan-zinc oxide-gentamicin nanocomposite on Pseudomonas aeruginosa and Staphylococcus aureus. International Journal of Biological Macromolecules, 163, 2248–2258. DOI: https://doi.org/10.1016/j.ijbiomac.2020.09.037

Ismail, R. A., Sulaiman, G. M., Abdulrahman, S. A., & Marzoog, T. R. (2015). Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid. https://doi.org/10.1016/j.msec.2015.04.047 DOI: https://doi.org/10.1016/j.msec.2015.04.047

ISO, I. S. O. (2017). 22412: 2017 Particle size analysis—Dynamic light scattering (DLS). International Organization for Standardization: Geneva, Switzerland.

Karimzadeh, I., Dizaji, H. R., & Aghazadeh, M. (2016). Preparation, characterization and PEGylation of superparamagnetic Fe3O4 nanoparticles from ethanol medium via cathodic electrochemical deposition (CED) method. Materials Research Express, 3(9), 095022. DOI: https://doi.org/10.1088/2053-1591/3/9/095022

Kereselidze, Z., Romero, V. H., Peralta, X. G., & Santamaria, F. (2012). Gold nanostar synthesis with a silver seed mediated growth method. JoVE (Journal of Visualized Experiments), 59, e3570. DOI: https://doi.org/10.3791/3570

Khalafalla, S., & Reimers, G. (1980). Preparation of dilution-stable aqueous magnetic fluids. IEEE Transactions on Magnetics, 16(2), 178–183. https://doi.org/10.1109/TMAG.1980.1060578 DOI: https://doi.org/10.1109/TMAG.1980.1060578

Kim, K.-H., Xing, H., Zuo, J.-M., Zhang, P., & Wang, H. (2015). TEM based high resolution and low-dose scanning electron nanodiffraction technique for nanostructure imaging and analysis. Micron, 71, 39–45. DOI: https://doi.org/10.1016/j.micron.2015.01.002

Krishnaraju, A. V, Rao, T. V. N., Sundararaju, D., Vanisree, M., Tsay, H.-S., & Subbaraju, G. V. (2005). Assessment of bioactivity of Indian medicinal plants using brine shrimp (Artemia salina) lethality assay. International Journal of Applied Science and Engineering, 3(2), 125–134.

Kumar, B., Smita, K., Cumbal, L., & Debut, A. (2014). Biogenic synthesis of iron oxide nanoparticles for 2-arylbenzimidazole fabrication. Journal of Saudi Chemical Society, 18(4), 364–369. DOI: https://doi.org/10.1016/j.jscs.2014.01.003

Liao, S., Zhang, Y., Pan, X., Zhu, F., Jiang, C., Liu, Q., Cheng, Z., Dai, G., Wu, G., & Wang, L. (2019). Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. International journal of nanomedicine, 1469–1487. DOI: https://doi.org/10.2147/IJN.S191340

Litter, M. I., & Blesa, M. A. (1992). Photodissolution of iron oxides. IV. A comparative study on the photodissolution of hematite, magnetite, and maghemite in EDTA media. Canadian Journal of Chemistry, 70(9), 2502–2510. DOI: https://doi.org/10.1139/v92-316

Liu, C. H., Zhou, Z. D., Yu, X., Lv, B. Q., Mao, J. F., & Xiao, D. (2008). Preparation and characterization of Fe3O4/Ag composite magnetic nanoparticles. Inorganic materials, 44, 291–295. DOI: https://doi.org/10.1134/S002016850803014X

Loureiro, R. J., Roque, F., Rodrigues, A. T., Herdeiro, M. T., & Ramalheira, E. (2016). O uso de antibióticos e as resistências bacterianas: breves notas sobre a sua evolução. Revista Portuguesa de saúde pública, 34(1), 77–84. DOI: https://doi.org/10.1016/j.rpsp.2015.11.003

Luna, J. de S., Dos Santos, A. F., De Lima, M. R. F., De Omena, M. C., De Mendonça, F. A. C., Bieber, L. W., & Sant’Ana, A. E. G. (2005). A study of the larvicidal and molluscicidal activities of some medicinal plants from northeast Brazil. Journal of Ethnopharmacology, 97(2), 199–206. DOI: https://doi.org/10.1016/j.jep.2004.10.004

Maheshwari, S. (2024). Synergistic effects of Woodfordia fruticosa silver nanoparticles accelerating wound healing in Swiss mice in vivo. Intelligent Pharmacy, 2(1), 17–27. DOI: https://doi.org/10.1016/j.ipha.2023.09.005

Makowski, M., Silva, Í. C., Pais do Amaral, C., Gonçalves, S., & Santos, N. C. (2019). Advances in lipid and metal nanoparticles for antimicrobial peptide delivery. Pharmaceutics, 11(11), 588. DOI: https://doi.org/10.3390/pharmaceutics11110588

Mehtab, S., Zaidi, M. G. H., & Irshad Siddiqi, T. (2018). Designing Fructose Stabilized Silver Nanoparticles for Mercury(II) Detection and Potential Antibacterial Agents. Material Science Research India, 15(3), 241–249. https://doi.org/10.13005/msri/150305 DOI: https://doi.org/10.13005/msri/150305

Molina-Salinas, G. M., & Said-Fernández, S. (2006). A modified microplate cytotoxicity assay with brine shrimp larvae (Artemia salina). Pharmacologyonline, 3, 633–638.

Naves, P., del Prado, G., Huelves, L., Gracia, M., Ruiz, V., Blanco, J., Dahbi, G., Blanco, M., del Carmen Ponte, M., & Soriano, F. (2008). Correlation between virulence factors and in vitro biofilm formation by Escherichia coli strains. Microbial pathogenesis, 45(2), 86–91. DOI: https://doi.org/10.1016/j.micpath.2008.03.003

Njagi, E. C., Huang, H., Stafford, L., Genuino, H., Galindo, H. M., Collins, J. B., Hoag, G. E., & Suib, S. L. (2011). Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir, 27(1), 264–271. DOI: https://doi.org/10.1021/la103190n

Noval, V. E., & Carriazo, J. G. (2019). Fe3O4-TiO2 and Fe3O4-SiO2 core-shell powders synthesized from industrially processed magnetite (Fe3O4) microparticles. Materials Research, 22, e20180660. DOI: https://doi.org/10.1590/1980-5373-mr-2018-0660

Ntungwe N, E., Domínguez-Martín, E. M., Roberto, A., Tavares, J., Isca, V., Pereira, P., Cebola, M.-J., & Rijo, P. (2020). Artemia species: An important tool to screen general toxicity samples. Current Pharmaceutical Design, 26(24), 2892–2908. DOI: https://doi.org/10.2174/1381612826666200406083035

Pavia, D. L., Lampman, G. M., Kriz, G. S., & Vyvyan, J. R. (2010). Introdução à espectroscopia: Tradução da 4a edição Norte-Americana. Em P. Barros (Org.), São Paulo: Cengage Learning (4o ed). Cengage Learning.

Pisutthanan, S., Plianbangchang, P., Pisutthanan, N., Ruanruay, S., & Muanrit, O. (2004). Brine shrimp lethality activity of Thai medicinal plants in the family Meliaceae. Naresuan University Journal: Science and Technology (NUJST), 12(2), 13–18.

Prabhu, S., & Poulose, E. K. (2012). Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International nano letters, 2, 1–10. DOI: https://doi.org/10.1186/2228-5326-2-32

Ribeiro, K. L., Frías, I. A. M., Franco, O. L., Dias, S. C., Sousa-Junior, A. A., Silva, O. N., Bakuzis, A. F., Oliveira, M. D. L., & Andrade, C. A. S. (2018). Clavanin A-bioconjugated Fe3O4/Silane core-shell nanoparticles for thermal ablation of bacterial biofilms. Colloids and Surfaces B: Biointerfaces, 169, 72–81. DOI: https://doi.org/10.1016/j.colsurfb.2018.04.055

Sallam, S. A., El-Subruiti, G. M., & Eltaweil, A. S. (2018). Facile synthesis of Ag–γ-Fe2 O3 superior nanocomposite for catalytic reduction of nitroaromatic compounds and catalytic degradation of methyl orange. Catalysis Letters, 148, 3701–3714. DOI: https://doi.org/10.1007/s10562-018-2569-z

Sathyanarayanan, M. B., Balachandranath, R., Genji Srinivasulu, Y., Kannaiyan, S. K., & Subbiahdoss, G. (2013). The effect of gold and iron-oxide nanoparticles on biofilm-forming pathogens. International Scholarly Research Notices, 2013. DOI: https://doi.org/10.1155/2013/272086

Sharma, G., & Jeevanandam, P. (2013). A facile synthesis of multifunctional iron oxide@ Ag core–shell nanoparticles and their catalytic applications. European Journal of Inorganic Chemistry, 2013(36), 6126–6136. DOI: https://doi.org/10.1002/ejic.201301193

Shervani, Z., Ikushima, Y., Sato, M., Kawanami, H., Hakuta, Y., Yokoyama, T., Nagase, T., Kuneida, H., & Aramaki, K. (2008). Morphology and size-controlled synthesis of silver nanoparticles in aqueous surfactant polymer solutions. Colloid and Polymer Science, 286, 403–410. DOI: https://doi.org/10.1007/s00396-007-1784-8

Sonbol, H., Mohammed, A. E., & Korany, S. M. (2022). Soil fungi as biomediator in silver nanoparticles formation and antimicrobial efficacy. International Journal of Nanomedicine, 2843–2863. DOI: https://doi.org/10.2147/IJN.S356724

Stepanović, S., Vuković, D., Dakić, I., Savić, B., & Švabić-Vlahović, M. (2000). A modified microtiter-plate test for quantification of staphylococcal biofilm formation. Journal of microbiological methods, 40(2), 175–179. DOI: https://doi.org/10.1016/S0167-7012(00)00122-6

Tun, W. S. T., Hongsing, N., Sirithongsuk, P., Nasompak, S., Daduang, S., Klaynongsruang, S., Taweechaisupapong, S., Chareonsudjai, S., Prangkio, P., & Kosolwattana, S. (2024). The synergistic action of silver nanoparticles and ceftazidime against antibiotic-resistant Burkholderia pseudomallei: A modifying treatment. Process Biochemistry, 136, 351–361. DOI: https://doi.org/10.1016/j.procbio.2023.11.016

Wang, F., Yin, C., Wei, X., Wang, Q., Cui, L., Wang, Y., Li, T., & Li, J. (2014). Synthesis and characterization of superparamagnetic Fe3O4nanoparticles modified with oleic acid. Integrated Ferroelectrics, 153(1), 92–101. DOI: https://doi.org/10.1080/10584587.2014.903062

Zamperini, C., Maccari, G., Deodato, D., Pasero, C., D’Agostino, I., Orofino, F., De Luca, F., Dreassi, E., Docquier, J.-D., & Botta, M. (2017). Identification, synthesis and biological activity of alkyl-guanidine oligomers as potent antibacterial agents. Scientific reports, 7(1), 8251. DOI: https://doi.org/10.1038/s41598-017-08749-6

Zhang, Y., Pan, X., Liao, S., Jiang, C., Wang, L., Tang, Y., Wu, G., Dai, G., & Chen, L. (2020). Quantitative proteomics reveals the mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa biofilms. Journal of proteome research, 19(8), 3109–3122. DOI: https://doi.org/10.1021/acs.jproteome.0c00114

Zhao, X., Zhu, S., Song, Y., Zhang, J., & Yang, B. (2015). Thermal responsive fluorescent nanocomposites based on carbon dots. RSC advances, 5(20), 15187–15193. DOI: https://doi.org/10.1039/C4RA13417F

Downloads

Published

2025-04-29

How to Cite

Barcelos, A. F., Amaral, A. das G., Carneiro, L. C., Naves, P. L. F., & Guilherme, L. R. (2025). Synthesis and antimicrobial activity of iron oxide/silver nanocomposites against Pseudomonas aeruginosa biofilms. Ciência E Natura, 47, e84264. https://doi.org/10.5902/2179460X84264

Most read articles by the same author(s)