Selection of models and parameter estimation for monitoring the COVID-19 epidemic in Brazil via Bayesian inference

Authors

DOI:

https://doi.org/10.5902/2179460X73812

Keywords:

Approximate Bayesian Computation, Epidemiological models, COVID-19

Abstract

In 2019, a new strain of coronavirus led to an outbreak of disease cases named COVID-19, evolving rapidly into a pandemic. In Brazil, delayed decision making and lack of knowledge have resulted in an alarming increase in daily transmission and deaths. In this context, researchers used mathematical models to assist in determining the parameters that act in the spread of diseases, revealing containment measures. However, numerous mathematical models exist in the literature, each with specific parameters to be specified, leading to an important question about which model best represents the pandemic behavior. In this regard, this work aims to apply the Approximate Bayesian Computation method to select the best model and simultaneously estimate the parameters to resolve the abovementioned issue. The models adopted were susceptible-infected-recovered (SIR), susceptible-exposed-infected-recovered (SEIR), susceptible-infected-recovered-susceptible (SIRS), and susceptible-exposed-infected-recovered-susceptible (SEIRS). Approximate Bayesian Computation Monte Carlo Sequencing (ABC-SMC) was used to select among four competing models to represent the number of infected individuals and to estimate the model parameters based on three periods of Brazil COVID-19 data. A forecasting test was performed to test the ABC-SMC algorithm and the selected models for two months. The result was compared with the actual number of infected that were reported. Among the teste models, it was found that the ABC-SMC algorithm had a promising performance, since the data were noisy and the models could not predict all parameters.

Downloads

Download data is not yet available.

Author Biographies

Lucas Martins Inez, Federal University of Espírito Santo

He graduated in Biochemistry from the Federal University of São João Del Rei. Bachelor's degree in Chemical Engineering from the Federal University of Espírito Santo. Currently pursuing a Master's degree in Chemical Engineering at the Federal University of Viçosa. Research projects focused on process optimization and feasibility analysis. Data engineering professional at MD2 Consultancy.

 

Carlos Eduardo Rambalducci Dalla, Federal University of Espírito Santo

He graduated in Chemical Engineering in 2017 and received his master's degree in 2019, all from the Department of Chemical Engineering at the Federal Rural University of Rio de Janeiro (UFRRJ). Currently, Ph.D. student in Mechanical Engineering at Federal University of Espirito Santo where research activity is focused mainly on irreversible processes, thermodynamics, inverse problems, and applied numerical methods.

Wellington Betencurte da Silva, Fluminense Federal University

He is graduated in Mathematics from Universidade Federal Fluminense, a master's in Mechanical Engineering from Instituto Militar de Engenharia, and a doctorate in Mechanical Engineering from Federal University of Rio de Janeiro-UFRJ with a co-guardianship period in Ecole des Mines d'Albi-Carmaux. Has experience in Applied Mathematics, acting on the following subjects: numerical methods, Bayesian filters, optimization and heat transfer.

Julio Cesar Sampaio Dutra, Federal University of Espírito Santo

He is Professor at Department of Rural Engineering at the Federal University of Espírito Santo (UFES). He holds a Bachelor's degree in Chemical Engineering from UFRRJ (2006) and a Ph.D. in Chemical Engineering from COPPE/UFRJ (2012), with a research period at NTNU, Norway (2011). His main research interests encompass Mathematical Modeling, Process Monitoring and Control.

José Mir Justino da Costa, Federal University of Amazonas

He is an associate professor at the Federal University of Amazonas (UFAM). He holds a degree in mathematics, a master's degree in mathematics from UFAM, and a doctorate in Mechanical Engineering from the Federal University of Rio de Janeiro -UFRJ. Has experience in applied Probability and Statistics and growth modeling tumor through Bayesian Inference and applied Probability and Statistics, as well as growth modelling tumor through Bayesian Inference.

 

References

Apergis, N. (2022). COVID-19 and cryptocurrency volatility: Evidence from asymmetric

modelling. Financ Res Lett, V.47, P. 102- 659. Disponível em: https://linkinghub.elsevier.

com/retrieve/pii/S1544612321005894. Acesso em: Julho de 2023.

Beaumont, M. A. (2010). Approximate bayesian computation in evolution and ecology. Annual

Review of Ecology, Evolution, and Systematics, 41(1), 379–406. Disponível em: https://doi.

org/10.1146/annurev-ecolsys-102209-144621. Acesso em: Julho de 2023.

Bekker, R.; uit het Broek, M.; Koole, G. (2023). Modeling COVID-19 hospital admissions and

occupancy in the Netherlands. Eur J Oper Res, 304(1), 207–218, Disponível em: https://

www.sciencedirect.com/science/article/pii/S0377221721011000.Acesso em: Julho de

Chan, Y. T. (2022). The macroeconomic impacts of the COVID-19 pandemic: A SIR-DSGE model

approach. China Econ Rev, V.71, 101-725. Disponível em: https://linkinghub.elsevier.

com/retrieve/pii/S1043951X21001437. Acesso em: Julho de 2023.

Chen, Z.; Feng, L.; Lay, H. A.; Furati, K.; Khaliq, A. (2022). SEIR model with unreported infected

population and dynamic parameters for the spread of COVID-19. Math Comput Simul,

Vol.198, P. 31–46, Disponível em: https://www.sciencedirect.com/science/article/pii/

S0378475422000787. Acesso em: Julho de 2023.

Cooper, I.; Mondal, A.; Antonopoulos, C. G. (2020). A SIR model assumption for the spread

of COVID-19 in different communities. Chaos, Solitons & Fractals, V.139, P. 110-057.

Disponível em: https://linkinghub.elsevier.com/retrieve/ pii/S0960077920304549.

Acesso em: Julho de 2023.

Das, A.; Dhar, A.; Goyal, S.; Kundu, A.; Pandey, S. (2021). COVID-19: Analytic results for a

modified SEIR model and comparison of different intervention strategies. Chaos, Solitons

& Fractals, Vol.144, p. 110-595. Disponível em: https://www.sciencedirect.com/science/

article/pii/S0960077920309863. Acesso em: Julho de 2023.

Deo, V.; Grover, G. (2021). A new extension of state-space SIR model to account for

Underreporting – An application to the COVID-19 transmission in California and Florida. Results Phys, Vol.24, p. 104-182. Disponível

em https://www.sciencedirect.com/science/article/pii/S2211379721003302. Acesso

em: Julho de 2023.

Dhar, M.; Bhattacharya, P. (2019). Analysis of SIR Epidemic Model with Different Basic

Reproduction Numbers and Validation with HIV and TSWV Data. Iran J Sci Technol Trans

A Sci, 43(5), 2385–2397. Disponível em: http://link.springer.com/10.1007/s40995-019-00701-9. Acesso em: Julho de 2023.

Franco, N. (2021). COVID-19 Belgium: Extended SEIR-QD model with nursing homes and longterm

scenarios-based forecasts. Epidemics, Vol.37, p. 100-490. Disponível em: https://

linkinghub.elsevier.com/retrieve/pii/S1755436521000414.

Kozyreff, G. (2021). Hospitalization dynamics during the first COVID-19 pandemic wave: SIR

modelling compared to Belgium, France, Italy, Switzerland and New York City data. Infect Dis Model, Vol.6, P. 398–404. Disponível

em: https://www.sciencedirect.com/science/article/pii/S2468042721000099. Acesso

em: Julho de 2023.

Liepe, J., Kirk, P., Filippi, S., Toni, T., Barnes, C. P., Stumpf, M. P. H. (2014). A framework for

parameter estimation and model selection from experimental data in systems biology

using approximate Bayesian computation. Nat Protoc, 9(2), 439–456. Disponível em:

http://www.nature.com/articles/nprot.2014.025. Acesso em: Julho de 2023.

Lima, J. P. d. O. (2021). Sistemas complexos aplicado a modelos epidemiológicos. Physicae

Organum - Revista dos Estudantes de Física da UnB, 7(1), 59–71. Disponível em: https://

periodicos.unb.br/index.php/physicae/article/view/36012 Acesso em: Julho de 2023.

Liu, J.; Ong, G. P.; Pang, V. J. (2022). Modelling effectiveness of COVID-19 pandemic control

policies using an Area-based SEIR model with consideration of infection during interzonal travel. Transp Res Part A Policy

Pract, V.161, 25–47. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/

S0965856422001197. Acesso em: Julho de 2023.

López, L.; Rodó, X. (2021). A modified SEIR model to predict the COVID-19 outbreak in Spain

and Italy: Simulating control scenarios and multi-scale epidemics. Results Phys, V.21, 103-

Disponível em: https://linkinghub.elsevier.com/ retrieve/pii/S2211379720321604.

Acesso em: Julho de 2023.

Marinho, P. R. D.; Cordeiro, G. M.; Coelho, H. F.C.; Brandão, S. C. S. (2021). Covid-19 in Brazil:

A sad scenario. Cytokine Growth Factor Reviews, 58, 51–54. Disponível em: https://doi.

org/10.1016/j.cytogfr.2020.10.010. Acesso em: Julho de 2023.

Marinov, T. T.; Marinova, R. S. (2022). Inverse problem for adaptive SIR model: Application

to COVID-19 in Latin America. Infect Dis Model, 7(1), 134–148. Disponível em: https://

linkinghub.elsevier.com/retrieve/pii/S2468042721000828. Acesso em: Julho de 2023.

Martin, O. A., Kumar, R., Lao, J. (2021). Bayesian Modeling and Computation in Python. Chapman

and Hall/CRC, Boca Raton.

Minter, A.; Retkute, R. (2019). Approximate Bayesian computation for infectious disease

modelling. Epidemics, v. 29, 100-368. Disponível em: https://doi.org/10.1016/j.

epidem.2019.100368. Acesso em: Julho de 2023.

Morando, N.; Sanfilippo, M.; Herrero, F.; Iturburu, M.; Torti, A.; Gutson, D.; Pando, M. A.;

Rabinovich, R. D. (2022). Evaluación de intervenciones durante la pandemia COVID-19:

desarrollo de un modelo basado en subpoblaciones con distintas tasas de contacto.

Revista Argentina de Microbiología, Vol. 54(2), p. 81–94. Disponível em: https://doi.

org/10.1016/j.ram.2021.04.004. Acesso em: Julho de 2023.

Morens, D. M., Fauci, A. S. (2020). Emerging Pandemic Diseases: How We Got to COVID-19.

Cell, 182(5), 1077–1092. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/

S0092867420310126. Acesso em: Julho de 2023.

Muñoz-Fernández, G. A., Seoane, J. M., Seoane-Sepúlveda, J. B. (2021). A SIR-type model

describing the successive waves of COVID-19. Chaos, Solitons & Fractals, V.144, 110-682.

Disponível em: https://www.sciencedirect.com/science/article/pii/S0960077921000357.

Acesso em: Julho de 2023.

Ng, T. W.; Turinici, G., Danchin, A. (2003). A double epidemic model for the SARS propagation.

BMC Infectious Diseases, 3(1), Disponível em: https://doi.org/10.1186/1471-2334-3-19.

Acesso em: Julho de 2023.

Paul, A. K., Kuddus, M. A. (2022). Mathematical analysis of a COVID-19 model with double dose

vaccination in Bangladesh. Results Phys, v.35, 105-392. Disponível em: https://linkinghub.

elsevier.com/retrieve/pii/S2211379722001589. Acesos em:

Postnikov, E. B. (2020). Estimation of COVID-19 dynamics “on a back-of-envelope”: Does the

simplest SIR model provide quantitative parameters and predictions? Chaos, Solitons

& Fractals, v.135, p. 109-841. Disponível em: https://www.sciencedirect.com/science/

article/pii/S0960077920302411. Acesso em: Julho de 2023.

Qiu, H., Wang, Q., Wu, Q., Zhou, H. (2022). Does flattening the curve make a difference? An

investigation of the COVID-19 pandemic based on an SIR model. Int Rev Econ Financ,

Vol. 80, p. 159–165. Disponível em https://www.sciencedirect.com/science/article/pii/

S1059056022000831. Acesso em: Julho de 2023.

Rao, V. S. H.; Upadhyay, R. K. (2013). Modeling the Spread and Outbreak Dynamics of Avian

Influenza (H5N1) Virus and Its Possible Control. Em: Dyn. Model. Infect. Dis., Springer

New York, New York, NY, pp. 227–250. Disponível em: http: //link.springer.com/10.1007/978-1-4614-9224-5{_}9. Acesso em: Julho de 2023.

Singh, A., Arquam, M. (2022). Epidemiological modeling for COVID-19 spread in India with the

effect of testing. Phys A Stat Mech its Appl, v.592, p. 126-774. Disponível em: https://

linkinghub.elsevier.com/retrieve/pii/S0378437121009596. Acesso em: Julho de 2023.

Sunnåker, M., Busetto, A. G., Numminen, E., Corander, J., Foll, M., Dessimoz, C. (2013).

Approximate bayesian computation. PLoS Computational Biology, v.9(1), e1002,803.

Disponível em: https://doi.org/10.1371/journal.pcbi.1002803. Acesso em: Julho de 2023.

Toni, T.; Welch, D.; Strelkowa, N.; Ipsen, A.; Stumpf, M. P. (2008). Approximate bayesian

computation scheme for parameter inference and model selection in dynamical

systems. Journal of The Royal Society Interface, v.6 n°31, 187–202. Disponível em: https://

doi.org/10.1098/rsif.2008.0172. Acesso em: Julho de 2023.

Ujvari, S. C. (2020). História Das Epidemias. Contexto.

Umar, M.; Sabir, Z.; Raja, M. A. Z.; Sánchez, Y. G. (2020). A stochastic numerical computing

heuristic of SIR nonlinear model based on dengue fever. Results Phys, v.19, 103-585.

Disponível em: https://linkinghub.elsevier.com/retrieve/pii/ S2211379720320258.

Acesso em: Julho de 2023.

Weinstein, S. J., Holland, M. S., Rogers, K. E., Barlow, N. S. (2020). Analytic solution of the

SEIR epidemic model via asymptotic approximant. Phys D Nonlinear Phenom, Vol.411,

p. 132-633. Disponível em: https://www.sciencedirect.com/science/article/pii/

S016727892030453X. Acesso em: Julho de 2023.

Wintachai, P.; Prathom, K. (2021). Stability analysis of SEIR model related to efficiency of

vaccines for COVID-19 situation.

Heliyon, 7(4), e06,812. Disponível em: https://doi.org/10.1016/j.heliyon.2021.e06812. Acesso

em: Julho de 2023.

Downloads

Published

2023-12-01

How to Cite

Inez, L. M., Dalla, C. E. R., Silva, W. B. da, Dutra, J. C. S., & Costa, J. M. J. da. (2023). Selection of models and parameter estimation for monitoring the COVID-19 epidemic in Brazil via Bayesian inference. Ciência E Natura, 45(esp. 3), e73812. https://doi.org/10.5902/2179460X73812