Analysis of the horizontal flow of non-turbulent movement in the night boundary layer under the influence of obstructions
DOI:
https://doi.org/10.5902/2179460X45316Keywords:
Non-turbulent-motions, obstaclesAbstract
When turbulence is well developed, the diffusivity tends to quickly destroy other flow variability modes, so that the turbulent processes become dominant. However, in cases of weak or intermittent turbulence the turbulence scales are restricted to small values, both spatially and temporally. Non-turbulent processes can become important in such cases. This is particularly possible in the Stable Boundary Layer, some studies have focused on non-turbulent flow modes such as submeso, for example. Non-turbulent motions occur simultaneously on other scales and may to dominate the fluctuations of the horizontal flow and vertical flux The physical forcing of submeso flow is still poorly understood, but it is believed to depend significantly on local conditions such as topography and vegetation. The hypothesis assumed in this paper is that obstacles of different nature and dimensions, such as trees, buildings and topography elements affect different flow scales and analyze how turbulent and submeso processes are affected differently.
Downloads
References
ACEVEDO, O. C. et al. Intermittency and the Exchange of Scalars in the Nocturnal Surface Layer. Boundary-Layer Meteorology, v. 119, n. 1, p. 41–55, 29 maio 2006.
ACEVEDO, O. C. et al. The Influence of Submeso Processes on Stable Boundary Layer Similarity Relationships. Journal of the Atmospheric Sciences, v. 71, n. 1, p. 207–225, jan. 2014.
ACEVEDO, O. C.; FITZJARRALD, D. R. In the core of the night - Effects of intermittent mixing on a horizontally heterogeneous surface. Boundary-Layer Meteorology, v. 106, n. 1, p. 1–33, 2003.
BUSINGER, J.A., 1982. Equations and concepts. In: NIEUWSTADT AND H. VAN DOP (Editors), Atmospheric turbulence and air pollution modelling. Dordrecht: D. Reide Puplishing.Company ,1981.
GUERRA, V.S., ACEVEDO, O.C., MEDEIROS, L.E. et al. Boundary-Layer Meteorol (2018) 169: 395. https://doi.org/10.1007/s10546-018-0381-3.
GRACHEV, A. A. et al. SHEBA flux-profile relationships in the stable atmospheric boundary layer. Boundary-Layer Meteorology, v. 124, n. 3, p. 315–333, 2007.
HAAR, A. Zur Theorie der orthogonalen Funktionensysteme. Mathematische Annalen, v. 69, n. 3, p. 331–371, set. 1910.
HOWELL, J.; MAHRT, L. Multiresolution flux decomposition. Boundary-Layer Meteorology, v. 83, p. 117–137, 1997.
MAHRT, L. Characteristics of submeso winds in the stable boundary layer. Boundary-Layer Meteorology, v. 130, n. 1, p. 1–14, 2009.
MAHRT, L. Surface Wind Direction Variability. Journal of Applied Meteorology and Climatology, v. 50, n. 1, p. 144–152, jan. 2011.
MAHRT, L.; MILLS, R. Horizontal diffusion by submeso motions in the stable boundary layer. Environmental Fluid Mechanics, v. 9, n. 4, p. 443–456, 2009.
MAHRT, L., PFISTER, L. & THOMAS, C.K. Boundary-Layer Meteorol (2019). https://doi.org/10.1007/s10546-019-00476-x.
MALLAT, S. A theory for multiresolution signal decomposition: the wavelet representation. Pami, v. 11, n. 7, p. 674–693, 1989.
MEDEIROS, L. E.; FITZJARRALD, D. R. Stable Boundary Layer in Complex Terrain. Part II: Geometrical and Sheltering Effects on Mixing. Journal of Applied Meteorology and Climatology, v. 54, n. 1, p. 170–188, jan. 2015.
MONTI, P.; PRINCEVAC, H. J. S.; F. M.; CHAN, W. C.; KOWALEWSKI, T. A.; PARDYJAK, E. R. Observations of Flow and Turbulence in the Nocturnal Boundary Layer over a Slope. Journal Atmospheric Science, v. 59, p. 2513-2534, 2002.
PANOFSKY,H.A.,DUTTON,J.A.Atmospheric turbulence: Models and methods for engeneering application. New York: Jonh wyley and Sons,1984.
STULL, R. B. STULL (1988) - Boundary layer meteorology.pdf, 1988.
TEICHRIEB, C. A. et al. Characterizing the relative role of low-frequency and turbulent processes in the nocturnal boundary layer through the analysis of two-point correlations of the wind components. Physica A: Statistical Mechanics and its Applications, v. 392, n. 6, p. 1510–1521, 2013.
VICKERS, D.; MAHRT, L. The cospectral gap and turbulent flux calculations. Journal of Atmospheric and Oceanic Technology, v. 20, n. 5, p. 660–672, 2003.
VICKERS, D.; MAHRT, L. Observations of the cross-wind velocity variance in the stable boundary layer. Environmental Fluid Mechanics, v. 7, n. 1, p. 55–71, 2007.
Downloads
Published
How to Cite
Issue
Section
License
To access the DECLARATION AND TRANSFER OF COPYRIGHT AUTHOR’S DECLARATION AND COPYRIGHT LICENSE click here.
Ethical Guidelines for Journal Publication
The Ciência e Natura journal is committed to ensuring ethics in publication and quality of articles.
Conformance to standards of ethical behavior is therefore expected of all parties involved: Authors, Editors, Reviewers, and the Publisher.
In particular,
Authors: Authors should present an objective discussion of the significance of research work as well as sufficient detail and references to permit others to replicate the experiments. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. Review Articles should also be objective, comprehensive, and accurate accounts of the state of the art. The Authors should ensure that their work is entirely original works, and if the work and/or words of others have been used, this has been appropriately acknowledged. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. Authors should not submit articles describing essentially the same research to more than one journal. The corresponding Author should ensure that there is a full consensus of all Co-authors in approving the final version of the paper and its submission for publication.
Editors: Editors should evaluate manuscripts exclusively on the basis of their academic merit. An Editor must not use unpublished information in the editor's own research without the express written consent of the Author. Editors should take reasonable responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper.
Reviewers: Any manuscripts received for review must be treated as confidential documents. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should be conducted objectively, and observations should be formulated clearly with supporting arguments, so that Authors can use them for improving the paper. Any selected Reviewer who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the Editor and excuse himself from the review process. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.