Analysis of the horizontal flow of non-turbulent movement in the night boundary layer under the influence of obstructions

Authors

DOI:

https://doi.org/10.5902/2179460X45316

Keywords:

Non-turbulent-motions, obstacles

Abstract

When turbulence is well developed, the diffusivity tends to quickly destroy other flow variability modes, so that the turbulent processes become dominant. However, in cases of weak or intermittent turbulence the turbulence scales are restricted to small values, both spatially and temporally. Non-turbulent processes can become important in such cases. This is particularly possible in the Stable Boundary Layer, some studies have focused on non-turbulent flow modes such as submeso, for example. Non-turbulent motions occur simultaneously on other scales and may to dominate the fluctuations of the horizontal flow and vertical flux The physical forcing of submeso flow is still poorly understood, but it is believed to depend significantly on local conditions such as topography and vegetation. The hypothesis assumed in this paper is that obstacles of different nature and dimensions, such as trees, buildings and topography elements affect different flow scales and analyze how turbulent and submeso processes are affected differently.

Downloads

Download data is not yet available.

Author Biographies

Viviane da Silva Guerra, Universidade Federal de Santa Maria, Santa Maria, RS

Possui graduação em Física pela UFSM, mestrado em Meteorologia pela UFSM e Doutorado em Física Pela UFSM e atualmente é aluna de pós doutorado em Meteorologia pela UFSM

Otávio Costa Azevedo, Universidade Federal de Santa Maria, Santa Maria, RS

Possui graduação em Meteorologia pela Universidade Federal de Pelotas, mestrado em Meteorologia pela Universidade de São Paulo e doutorado em Ciências Atmosféricas pela State University of New York. Atualmente é professor associado da Universidade Federal de Santa Maria

Felipe Denardin Costa, Fundação Universidade Federal do Pampa, Alegrete, RS

Possui graduação em Física Licenciatura Pela pela Universidade Federal de Santa Maria, mestrado em Física pela Universidade Federal de Santa Maria, e doutorado em Física pela Universidade Federal de Santa Maria

Pablo Eli Soares de Oliveira, Universidade Federal de Santa Maria, Santa Maria, RS

Possui graduação, mestrado e doutorado em Meteorologia pela Universidade Federal de Santa Maria. Atualmente é meteorologista da Universidade Federal de Santa Maria

References

ACEVEDO, O. C. et al. Intermittency and the Exchange of Scalars in the Nocturnal Surface Layer. Boundary-Layer Meteorology, v. 119, n. 1, p. 41–55, 29 maio 2006.

ACEVEDO, O. C. et al. The Influence of Submeso Processes on Stable Boundary Layer Similarity Relationships. Journal of the Atmospheric Sciences, v. 71, n. 1, p. 207–225, jan. 2014.

ACEVEDO, O. C.; FITZJARRALD, D. R. In the core of the night - Effects of intermittent mixing on a horizontally heterogeneous surface. Boundary-Layer Meteorology, v. 106, n. 1, p. 1–33, 2003.

BUSINGER, J.A., 1982. Equations and concepts. In: NIEUWSTADT AND H. VAN DOP (Editors), Atmospheric turbulence and air pollution modelling. Dordrecht: D. Reide Puplishing.Company ,1981.

GUERRA, V.S., ACEVEDO, O.C., MEDEIROS, L.E. et al. Boundary-Layer Meteorol (2018) 169: 395. https://doi.org/10.1007/s10546-018-0381-3.

GRACHEV, A. A. et al. SHEBA flux-profile relationships in the stable atmospheric boundary layer. Boundary-Layer Meteorology, v. 124, n. 3, p. 315–333, 2007.

HAAR, A. Zur Theorie der orthogonalen Funktionensysteme. Mathematische Annalen, v. 69, n. 3, p. 331–371, set. 1910.

HOWELL, J.; MAHRT, L. Multiresolution flux decomposition. Boundary-Layer Meteorology, v. 83, p. 117–137, 1997.

MAHRT, L. Characteristics of submeso winds in the stable boundary layer. Boundary-Layer Meteorology, v. 130, n. 1, p. 1–14, 2009.

MAHRT, L. Surface Wind Direction Variability. Journal of Applied Meteorology and Climatology, v. 50, n. 1, p. 144–152, jan. 2011.

MAHRT, L.; MILLS, R. Horizontal diffusion by submeso motions in the stable boundary layer. Environmental Fluid Mechanics, v. 9, n. 4, p. 443–456, 2009.

MAHRT, L., PFISTER, L. & THOMAS, C.K. Boundary-Layer Meteorol (2019). https://doi.org/10.1007/s10546-019-00476-x.

MALLAT, S. A theory for multiresolution signal decomposition: the wavelet representation. Pami, v. 11, n. 7, p. 674–693, 1989.

MEDEIROS, L. E.; FITZJARRALD, D. R. Stable Boundary Layer in Complex Terrain. Part II: Geometrical and Sheltering Effects on Mixing. Journal of Applied Meteorology and Climatology, v. 54, n. 1, p. 170–188, jan. 2015.

MONTI, P.; PRINCEVAC, H. J. S.; F. M.; CHAN, W. C.; KOWALEWSKI, T. A.; PARDYJAK, E. R. Observations of Flow and Turbulence in the Nocturnal Boundary Layer over a Slope. Journal Atmospheric Science, v. 59, p. 2513-2534, 2002.

PANOFSKY,H.A.,DUTTON,J.A.Atmospheric turbulence: Models and methods for engeneering application. New York: Jonh wyley and Sons,1984.

STULL, R. B. STULL (1988) - Boundary layer meteorology.pdf, 1988.

TEICHRIEB, C. A. et al. Characterizing the relative role of low-frequency and turbulent processes in the nocturnal boundary layer through the analysis of two-point correlations of the wind components. Physica A: Statistical Mechanics and its Applications, v. 392, n. 6, p. 1510–1521, 2013.

VICKERS, D.; MAHRT, L. The cospectral gap and turbulent flux calculations. Journal of Atmospheric and Oceanic Technology, v. 20, n. 5, p. 660–672, 2003.

VICKERS, D.; MAHRT, L. Observations of the cross-wind velocity variance in the stable boundary layer. Environmental Fluid Mechanics, v. 7, n. 1, p. 55–71, 2007.

Published

2020-08-28

How to Cite

Guerra, V. da S., Azevedo, O. C., Costa, F. D., & Oliveira, P. E. S. de. (2020). Analysis of the horizontal flow of non-turbulent movement in the night boundary layer under the influence of obstructions. Ciência E Natura, 42, e8. https://doi.org/10.5902/2179460X45316

Most read articles by the same author(s)

<< < 1 2 3 4 > >>