Forecast of the historical series of revenues of the Brazilian food industry using forecasting techniques

Authors

DOI:

https://doi.org/10.5902/2179460X40533

Keywords:

Time Series, Forecast Combination, Food Industry

Abstract

This paper’s objective is to verify which is the best forecasting technique, including the use of the forecasts’ combination to evaluate the prognosis of the Brazilian food industry’s revenues. The historical series of revenues has deterministic trend and seasonality. Thereby, the models chosen to work on were: SARIMA (3,0,0)×(0,1,1)12, SARIMA (4,0,0)×(2,0,0)12 and Holt-Winters Multiplicative. Analyzing the accuracy measures, to perform the series’ forecast it was used the combination of the three models, presented by the methods: Simple Arithmetic Mean, Ordinary Least Squares and Regression of Absolute Minimum Deviation. The results obtained by the forecast were satisfactory, showing that the Brazilian food industry’s revenues will have peaks of growth and decay in the next two years. Therefore, a preparation of the sector is necessary for the period in which a possible decrease in this revenue will occur, as well as dismissal of the workers, since it is the sector that most employs in Brazil.

Downloads

Download data is not yet available.

Author Biographies

Matisa Andresa Maas, Universidade Federal de Santa Maria

Acadêmica de Estatística na Universidade Federal de Santa Maria

Cleber Bisognin, Universidade Federal de Santa Maria

Graduado em Licencitura Plena em Matemática pela Universidade Federal de Santa Maria, Mestre em Matemática pela Universidade Federal do Rio Grande do Sul e Doutor em Matemática pela Universidade Federal do Rio Grande do Sul

References

ABIA - ASSOCIAÇÃO BRASILEIRA DA INDÚSTRIA DE ALIMENTOS (Brasil). Indústria De Alimentos Fecha 2018 com aumento de 2,08% em faturamento [Internet]. Avaiable from: https://bit.ly/2DYutZI. Acesso em: 9 dez. 2019.

AGÊNCIA BRASIL Faturamento do setor de alimentos aumentou 2,08% no ano passado [Internet].. Avaiable from: https://bit.ly/2N8KjqE. Acesso em: 29 jul. 2019.

ALBUQUERQUE, Jean Carlos da Silva; SERRA, CMV. Utilização de modelos de Holt-Winters para a previsão de séries temporais de consumo de refrigerantes no Brasil. XXVI ENEGEP, Fortaleza, Anais... Rio de Janeiro: ABEPRO, 2006.

ARAÚJO, Gustavo Castro et al. Previsão de demanda e análise simplificada da gestão de estoque aplicadas a uma empresa do setor alimentício. Brazilian Journal of Production Engineering-BJPE, v. 4, n. 2, p. 48-64, 2018.

BATES, John M.; GRANGER, Clive WJ. The combination of forecasts. Journal of the Operational Research Society, v. 20, n. 4, p. 451-468, 1969.

CECATTO, Cristiano; BELFIORE, Patrícia. O uso de métodos de previsão de demanda nas indústrias alimentícias brasileiras. Gestão & Produção, v. 22, n. 2, p. 404-418, 2015.

CLEMEN, Robert T.; WINKLER, Robert L. Combining economic forecasts. Journal of Business & Economic Statistics, v. 4, n. 1, p. 39-46, 1986.

DA CUNHA, Denis Antonio; DIAS, Roberto Serpa; GOMES, Adriano Provezano. Uma análise sistêmica da indústria alimentícia brasileira. 2006.

DE MENEZES, Lilian M.; BUNN, Derek W.; TAYLOR, James W. Review of guidelines for the use of combined forecasts. European Journal of Operational Research, v. 120, n. 1, p. 190-204, 2000.

DUAS RODAS. ABIA indica 4 prioridades para a indústria alimentícia em 2019 [Internet]. Avaiable from: https://bit.ly/2SYMzR1. Acesso em: 29 jul. 2019.

FLORES, Benito E.; WHITE, Edna M. Subjective versus objective combining of forecasts: an experiment. Journal of Forecasting, v. 8, n. 3, p. 331-341, 1989.

GRANGER, Clive WJ; RAMANATHAN, Ramu. Improved methods of combining forecasts. Journal of forecasting, v. 3, n. 2, p. 197-204, 1984.

GONÇALVES, Paulo. Administração de materiais. Elsevier Brasil, 2016.

GOUVEIA, Flávia. Indústria de alimentos: no caminho da inovação e de novos produtos. Inovação Uniemp, v. 2, n. 5, p. 32-37, 2006.

IBGE. Instituto Brasileiro de Geografia e Estatística. Classificação Nacional de Atividades Econômicas - versão 2.0. Rio de Janeiro: IBGE, 2007.

MACKAY, Marisa Maio; METCALFE, Mike. Multiple method forecasts for discontinuous innovations. Technological Forecasting and Social Change, v. 69, n. 3, p. 221-232, 2002.

MORETTIN, Pedro Alberto; TOLOI, Clélia M. de Castro. Análise de Séries Temporais. São Paulo, ABE, 2004.

NEWBOLD, Paul; GRANGER, Clive WJ. Experience with forecasting univariate time series and the combination of forecasts. Journal of the Royal Statistical Society: Series A (General), v. 137, n. 2, p. 131-146, 1974.

PELLEGRINI, Fernando R.; FOGLIATTO, F. Estudo comparativo entre modelos de Winters e de Box-Jenkins para a previsão de demanda sazonal. Revista Produto & Produção, v. 4, p. 72-85, 2000.

QUEIROZ, Abelardo A.; CAVALHEIRO, Darlene. Método de previsão de demanda e detecção de sazonalidade para o planejamento da produção de indústrias de alimentos. Anais do Encontro Nacional de Engenharia de Produção, v. 23, 2003.

R CODE TEAM (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

RAUSSER, Gordon C.; OLIVEIRA, Ronald A. An econometric analysis of wilderness area use. Journal of the American Statistical Association, v. 71, n. 354, p. 276-285, 1976.

SANTANA, Daniel Filipe da et al. Indústria de alimentos e bebidas no Estado da Paraíba: contribuição socioeconômica e comportamento ambiental sob a perspectiva empresarial. 2017.

SOUTO, Eduardo et al. Uma Abordagem Simples para Previsão do Consumo de Energia em Redes de Sensores sem Fio. 23º. Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos, Fortaleza, v. 2, p. 1139-1142, 2005.

WERNER, Liane. Um modelo composto para realizar previsão de demanda através da integração da combinação de previsões e do ajuste baseado na opinião. 2005.

WERNER, Liane; BISOGNIN, Cleber; Menegotto, Letícia. Previsão da umidade Relativa do Ar de Porto Alegre. Cadernos do IME – Série Estatística. Rio de janeiro, v. 43, p. 39-59, 2017.

Published

2020-12-29

How to Cite

Maas, M. A., & Bisognin, C. (2020). Forecast of the historical series of revenues of the Brazilian food industry using forecasting techniques. Ciência E Natura, 42, e47. https://doi.org/10.5902/2179460X40533