Hysteresis loops in the evapotranspiration in a pasture area in south Brazil
DOI:
https://doi.org/10.5902/2179460X30503Keywords:
Evapotranspiration, Hysteresis, Environmental variablesAbstract
One of the main components of water and energy balance in terrestrial ecosystems, the evapotranspiration (ET), was estimated using the eddy covariance technique. To better understand these energy transfer processes it is necessary to know how the ET responds to different meteorological variables. The main objective of this work is to investigate the hysteresis response of ET to environmental variables including air temperature (Temp), vapor pressure deficit (DPV) and net radiation (Rn) at a diel timescale for a pasture area in southern Brazil. ET presents hysteresis with DPV and Temp, responding more strongly to the vapor pressure deficit.Downloads
References
AHRENDS, H.E.; HASENEDER-LIND, R.; SCHWEEN, J.H.; CREWELL, S.; STADLER, A.; RASCHER, U. Diurnal Dynamics of Wheat Evapotranspiration Derived from Ground-Based Thermal Imagery. Remote Sens. 2014; 6: 9775-9801.
BAI, Y. et al. 2015. Hysteresis loops between canopy conductance of grapevines and meteorological variables in an oasis ecosystem. Agricultural and Forest Meteorology. 2015; 214–215: 319–327.
BALDOCCHI, D. D.; HINCKS, B. B.; MEYERS, T. P. Measuring biosphere atmosphere exchanges of biologycally related gases with micrometeorological methods. Ecology. 1988; v. 69, n. 5: 1331-1340.
IBGE - Instituto Brasileiro de Geografia e Estatística: Mapa exploratório de solos do Estado do Rio Grande do Sul, 2002. Disponível em: http://mapas.ibge.gov.br/tematicos/solos. Acesso em 25 maio 2017.
JACÓBSEN, L.O.; FONTANA, D.C.; SHIMABUKURO, Y.E. Efeitos associados a El Niño e La Niña na vegetação do Estado do Rio Grande do Sul observados através do NDVI/NOAA. Revista Brasileira de Meteorologia. 2004; v.19, n.2: 129-140.
LU N.; CHEN, S.; WILSKE, B.; SUN, G.; CHEN, J. Evapotranspiration and soil water relationships in a range of disturbed and undisturbed ecosystems in the semi-arid Inner Mongolia, China. Journal of Plant Ecology. 2011; 4: 49–60.
MALLICK, K. et al. Canopy-scale biophysical controls of transpiration and evaporation in the Amazon Basin, Hydrol. Earth Syst. Sci. 2016; 20: 4237–4264.
MAUDER, M.; FOKEN T. Impact of post-field data processing on eddy covariance flux estimates and energy balance closure. Meteorologische Zeitschrift. 2006; 15: 597-609.
MONCRIEFF, J. B. et al. A system to measure surface fluxes of momentum, sensible heat, water vapor and carbon dioxide. Journal of Hidrology. 1997; v.188-189: 589-611.
MONCRIEFF, J. B. et al. Averaging, detrending and filtering of eddy covariance time series, Handbook of micrometeorology: a guide for surface flux measurements, (Eds.) Lee, X.; Massman W. J.; Law B. E. Dordrecht: Kluwer Academic, 7-31, 2004.
NAKAI, T.; SHIMOYAMA, K. Ultrasonic anemometer angle of attack errors under turbulent conditions. Agricultural and Forest Meteorology. 2012; 18: 162-163.
NIMER, E. Climatologia do Brasil. Rio de Janeiro: IBGE, 1989. Disponível em: <http://biblioteca.ibge.gov.br/biblioteca-catalogo?id=281099&view=detalhes>. Acesso em: 16 novembro 2016.
NIU, S. et al. Seasonal hysteresis of net ecosystem exchange in response to temperature change: patterns and causes. Global Change Biology. 2011; 17: 3102–3114.
SANTOS, A. B. dos. et al. Rio Grande do Sul State's (Brazil) native grasses morphogenesis under rotational grazing during spring and summer. Ciência Rural, vol. 44, n. 1, p. 97-103, 2014. DOI: 10.1590/S0103-84782014000100016.
REICHSTEIN, M. et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology. 2005; 11: 1424-1439.
TAKAGI, K.; TSUBOYA, T.; TAKAHASHI, H. Diurnal hystereses of stomatal and bulk surface conductances in relation to vapor pressure deficit in a cool temperate wetland. Agricultural and Forest Meteorology. 1998; v. 91: 177-191.
VICKERS, D.; MAHRT L. Controle de qualidade e problemas de amostragem de fluxo para dados de torre e aeronave. Journal of Atmospheric and Oceanic Technology. 1997; 14: 512-526.
WANG, K.C.; DICKINSON, R.E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology and climatic variability. Reviews of Geophysics 50, RG2005, 2012.
WEBB, E. K.; PEARMAN, G. I.; LEUNING, R. Correction of flux measurements for density effects due to heat and water vapor transfer. Quarterly Journal of the Royal Meteorological Society. 1980; 106: 85–100.
WILSON, K. B. et al. Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology. 2002; 113: 223-243.
ZHANG, Q.; MANZONI, S.; KATUL, G.; PORPORATO, A.; YANG, D. The hysteretic evapotranspiration - vapor pressure deficit relation, J. Geophys. Res. Biogeosci. 2014; 119:125–140.
ZHENG, H.; WANG, Q.; ZHU, X.; LI, Y.; YU, G. Hysteresis Responses of Evapotranspiration to Meteorological Factors at a Diel Timescale: Patterns and Causes. PLoS ONE 9(6): e98857, 2014.
Downloads
Published
How to Cite
Issue
Section
License
To access the DECLARATION AND TRANSFER OF COPYRIGHT AUTHOR’S DECLARATION AND COPYRIGHT LICENSE click here.
Ethical Guidelines for Journal Publication
The Ciência e Natura journal is committed to ensuring ethics in publication and quality of articles.
Conformance to standards of ethical behavior is therefore expected of all parties involved: Authors, Editors, Reviewers, and the Publisher.
In particular,
Authors: Authors should present an objective discussion of the significance of research work as well as sufficient detail and references to permit others to replicate the experiments. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. Review Articles should also be objective, comprehensive, and accurate accounts of the state of the art. The Authors should ensure that their work is entirely original works, and if the work and/or words of others have been used, this has been appropriately acknowledged. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. Authors should not submit articles describing essentially the same research to more than one journal. The corresponding Author should ensure that there is a full consensus of all Co-authors in approving the final version of the paper and its submission for publication.
Editors: Editors should evaluate manuscripts exclusively on the basis of their academic merit. An Editor must not use unpublished information in the editor's own research without the express written consent of the Author. Editors should take reasonable responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper.
Reviewers: Any manuscripts received for review must be treated as confidential documents. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should be conducted objectively, and observations should be formulated clearly with supporting arguments, so that Authors can use them for improving the paper. Any selected Reviewer who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the Editor and excuse himself from the review process. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.