Temporal description of Cerrado sensu stricto behavior using time series

Authors

DOI:

https://doi.org/10.5902/2179460X27712

Keywords:

Pirapitinga ecological station. Surface temperature. NDVI.

Abstract

Currently has been a growing concern about the relationship between humans and nature. The challenges to making this relationship more sustainable have been pointed out. Together with this growing need and concern environmental, geotechnologies appear as strong allies, especially in the generation of more accurate and updated data to assist in tasks such as environmental management and planning in the processes of exploration of a given biome. In this context, this study aimed to analyze the phenological behavior of Cerrado phytophysiognomies (Pirapitinga Ecological Station - MG) with the use of time series of NDVI and surface temperature determined from digital images, obtained with the Landsat 5-TM sensor. For this, a study was carried out with the two time series, analyzing the intrinsic variables, such as trend, seasonality, prediction and cointegration. The prediction of the NDVI series presented a standard error lower than 0.079, which represents a quality information about the phytophysiognomy analyzed at a future time. This is a very important fact, given that currently the Cerrado suffers from an accelerated process of degradation. Therefore, it is useful information in processes of recovery, maneuver and management of degraded areas.

Downloads

Download data is not yet available.

Author Biographies

Sérgio Luís Dias Machado, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais

Mestre em Qualidade Ambiental, pelo Programa de Pós-Graduação em Qualidade Ambiental (PPGMQ - ICIAG/UFU), da Universidade Federal de Uberlândia

Claudionor Ribeiro Silva, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais

Professor Associado DE na Universidade Federal de Uberlândia (2011/Atual)

Aracy Alves de Araújo, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais

Professora Adjunto da Universidade Federal de Uberlândia - UFU

References

ALHAMAD MN, STUTHT J, VANNUCCI M. Biophysical Modelling and NDVI Time Series to Project Near-Term Forage Supply: Spectral Analysis Aided by Wavelet Denoising and ARIMA Modelling. International Journal of Remote Sensing. 2007;28(11):2513-2548.

CARVALHO, FMV FERREIRA LG, LOBO FC, DINIZ-FILHO JAF, BINI, LM. Padrões de autocorrelação espacial de índices de vegetação MODIS no bioma cerrado. Revista Árvore, 2008;32(2):279-290.

CASTRO A, MARTINS FR, TAMASHIRO JY, SHEPHERD GJ. How rich is the flora of Brazilian Cerrados. Annals of the Missouri Botanical Garden. 1999;86(1):192-224.

COELHO JUNIOR LM, REZENDE JLP, CALEGARIO N, SILVA ML. Análise longitudinal dos preços do carvão vegetal, no Estado de Minas Gerais. Revista Árvore. 2006;30(3):429-438.

DINIZ H, ANDRADE LCM, CARVALHO ACPLF, ANDRADE MG. Previsão de séries temporais utilizando redes neurais artificiais e modelos de box e jenkins. In: Anais V Simpósio Brasileiro de Redes Neurais [Internet]. 1998 December s/d; Belo Horizonte/MG, Brasil. 1998 [cited 2017 feb. 25]. Available from: http://repository.usp.br/.

EITEN G. Vegetação do Cerrado. In: PINTO M. N. (Ed.). Cerrado: caracterização, ocupação e perspectiva. Brasília, DF: Editora UNB; 1994.

GUJARATI DN, PORTER DC. Econometria Básica. 5 ed. Porto Alegre: Amgh Editora Ltd.; 2011.

INSTITUTO CHICO MENDES (ICMBIO). Estação Ecológica de Pirapitinga. Brasília (Brasil): Ministério do Meio Ambiente, 2013.

JACOBI PR. Educação Ambiental: o desafio da construção de um pensamento crítico, complexo e reflexivo. Educação e Pesquisa. 2005;31(2).

LAGO AAC. Estocolmo, Rio, Joanesburgo o Brasil e as três conferências ambientais das Nações Unidas. Brasília: Funag; 2006.

LIESENBERG V, PONZONI FJ, GALVÃO LS. Análise da dinâmica sazonal e separabilidade espectral de algumas fitofisionomias do cerrado com índices de vegetação dos sensores

MODIS/TERRA e AQUA. Revista Árvore. 2007;31(2):295-305.

MENESES PR, ALMEIDA T, ROSA ANCS, SANO EE, SOUZA EB, BAPTISTA GMM, BRITES, RS. Introdução ao Processamento de Imagens de Sensoriamento Remoto. Brasília: Cnpq; 2012.

NASSUR OAC, FERREIRA E, SAFADI T, DANTAS, AAA. Monitoramento e Projeção Futura da Vegetação no Parque Nacional do Itatiaia Através de Sensoriamento Remoto. CERNE. 2015;21(3).

NOVO EMLM. Sensoriamento Remoto: Princípios e Aplicações. 4 ed. São Paulo: Blucer; 2010.

OLIVEIRA FILHO, A.T.; RATTER, J. T. Vegetation physiognomies and woody flora o the cerrado biome. In: Oliveira PS, Marquis RJ. (Ed). The cerrados of Brazil: ecology and natural history of a

Neotropical savanna. New York: Columbia University Press; 2002. p. 91-120.

PINHEIRO ES, DURIGAN G. Geotecnologias aplicadas à análise da dinâmica do cerrado na Estação Ecológica de Assis, SP. In: Anais XIV Simpósio Brasileiro de Sensoriamento Remoto [Internet]; 2009 April 25-30; Natal, Brasil. 2009 [cited 2017 feb. 20]. Available from: http://marte.dpi.inpe.br/col/dpi.inpe.br/sbsr@80/2008/11.09.14.30/doc/2905-2912.pdf.

POKORNY M. Introduction to Econometrics. Oxford: Basil Blackwell Ltd.;1987.

PONZONI FJ. SHIMABUKURO, Y. E. Sensoriamento Remoto no Estudo da Vegetação. São José dos Campos: Parêntese; 2010.

RAFIQUE R, ZHAO F, JONG R, ZENG N, ASRAR, GR. Global and Regional Variability and Change in Terrestrial Ecosystems Net Primary Production and NDVI: A Model-Data Comparison. Remote Sensing. 2016;8(3):177-193.

RIBEIRO JF, WALTER BMT. Fitofisionomia do Bioma Cerrado. In: Sano SM, Almeida SP. (Ed). Cerrado: ambiente e flora. Planaltina, DF: EMBRAPA-CPAC; 1998. p. 87-166.

SPAREMBERGUER, R. F. L.; SILVA, D. A. A relação homem, meio ambiente, desenvolvimento e o papel do direito ambiental. Veredas do Direito. 2005;2(4).

WOOLDRIDGE JM. Econometric analysis of cross section and panel data. Cambridge, Mass: MIT Press; 2002.

XU L, LI B, YUAN Y, GAO X, ZHANG T, SUN Q. Detecting Different Types of Directional Land Cover Changes Using MODIS NDVI Time Series Dataset. Remote Sensing. 2016;8(6):495-518.

YUAN X, LI L, CHEN X, SHI H. Effects of Precipitation Intensity and Temperature on NDVI-Based Grass Change over Northern China during the Period from 1982 to 2011. Remote Sensing. 2015;7(8):10164-10183.

Published

2018-03-27

How to Cite

Machado, S. L. D., Silva, C. R., & Araújo, A. A. de. (2018). Temporal description of Cerrado sensu stricto behavior using time series. Ciência E Natura, 40, e30. https://doi.org/10.5902/2179460X27712

Issue

Section

Geo-Sciences