COMPARISON OF WIND DATA OF ERA-INTERIM REANALYSIS AND CFSR WITH THE DATA FROM AUTOMATIC INMET STATIONS IN RIO GRANDE DO SUL
DOI:
https://doi.org/10.5902/2179460X20233Keywords:
Wind Energy. Wind field. Reanalysis. ERA-Interim. CFSR.Abstract
Wind power is currently one of the sources of electricity the fastest growing worldwide. However, especially in Brazil, it is still very difficult to locate areas with reliable winds for the implementation of a wind farm, because there is not enough data density that guarante the wind farm efficiency. Thus, the development of models that simulate wind conditions are extremely important for studies and research in this area. In this way, weather reanalysis data can be used as input into high-resolution regional models, for example. Therefore, this work presents a study comparing two sets of weather Reanalysis of wind data - ERA-Interim and CFSR - with measured data from automated weather stations of the National Institute of Meteorology in the Rio Grande do Sul state in order to obtain the coefficient correlation of data from reanalysis with data measured for each measurement point and for every season. For better visualization of the correlation results, it is also built contour maps with correlation coefficient where can be seeing that the best performance of the CFSR reanalysis.
Downloads
References
Carvalho, D., Rocha, A., Gómez-Gesteira, M., Santos, C. S. (2013). WRF wind simulation and wind energy production estimates forced by different reanalyses: Comparison with observed data for Portugal. Applied Energy, 117, 116–126.
CCEE (2015). Usinas eólicas mais que dobram a produçãoo de energia no primeiro semestre, URL http://www.ccee.org.br/portal/faces/pages_publico/noticias-opiniao/noticias/noticialeitura?contentid=CCEE_357460&_adf.ctrl-state=17wx1e5can_45&_afrLoop=1130246065565635#%40%3Fcontentid%3DCCEE_357460%26_afrLoop%3D1130246065565635%26_adf.ctrl-state%3Dqi6wk9feb_4.
Dee, D., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M., Balsamo, G., Bauer, P., et al. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), 553–597.
Hanna, S. R. (1988). Hibrid Plume Dispersion Model (HPDM) Development and Evaluation. Journal of applied Meteorology, 28, 206–223.
INMET (2011). NOTA TÉCNICA No. 001/2011/SEGER/LAIME/CSC/INMET - Rede de Estações Meteorológicas Automáticas do INMET. MINISTÉRIO DA
AGRICULTURA, PECUÁRIA E ABASTECIMENTO, URL http://www.inmet.gov.br/portal/css/content/topo_iframe/pdf/Nota_Tecnica-Rede_estacoes_INMET.pdf.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Jenne, R., Joseph, D. (1996). The ncep/ncar 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3), 437–471.
Liléo, S., Petrik, O. (2011). Investigation on the use of NCEP/NCAR, MERRA and NCEP/CFSR reanalysis data in wind resource analysis. European Wind Energy Association.
Pinto, M. d. O. (2013). Fundamentos de Energia Eólica. LTC, Rio de Janeiro, Brasil.
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., EmilyLiu, Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G. K., Bloom, S., Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J., D.Koster, R., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., Woollen, J. (2011). MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. Journal of Climate, 24, 3624–3648.
Saha, S., Moorthi, S., Pan, H. L., Wu, X., Wang, J., Nadiga, S., ck Tripp, P., Kistler, R., en, J. W., d Behringer, D., Liu, H., Stokes, D., Grumbine, R., Gayno, G., Wang, J., Hou, Y. T., Chuang, H. y., Juang, H. M. H., Sela, J., Iredell, M., Treadon, R., Kleist, D., t, P. V. D., Keyser, D., Derber, J., Ek, M., e Meng, J., Wei, H., an Yang, R., Lord, S., van den Dool, H., Kumar, A., u Wang, W., Long, C., iah, M. C., Xue, Y., n Huang, B., Schemm, J. K., ey Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W., Zou, C. Z., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds, R. W., Rutledge, G., Goldberg, M. (2010). The NCEP climate forecast system reanalysis. American Meteorological Society, 91, 1015–1057.
Stensrud, D. J. (2007). Parameterization schemes: keys to understanding numerical weather prediction models. Cambridge University Press.
Downloads
Published
How to Cite
Issue
Section
License
To access the DECLARATION AND TRANSFER OF COPYRIGHT AUTHOR’S DECLARATION AND COPYRIGHT LICENSE click here.
Ethical Guidelines for Journal Publication
The Ciência e Natura journal is committed to ensuring ethics in publication and quality of articles.
Conformance to standards of ethical behavior is therefore expected of all parties involved: Authors, Editors, Reviewers, and the Publisher.
In particular,
Authors: Authors should present an objective discussion of the significance of research work as well as sufficient detail and references to permit others to replicate the experiments. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. Review Articles should also be objective, comprehensive, and accurate accounts of the state of the art. The Authors should ensure that their work is entirely original works, and if the work and/or words of others have been used, this has been appropriately acknowledged. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. Authors should not submit articles describing essentially the same research to more than one journal. The corresponding Author should ensure that there is a full consensus of all Co-authors in approving the final version of the paper and its submission for publication.
Editors: Editors should evaluate manuscripts exclusively on the basis of their academic merit. An Editor must not use unpublished information in the editor's own research without the express written consent of the Author. Editors should take reasonable responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper.
Reviewers: Any manuscripts received for review must be treated as confidential documents. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should be conducted objectively, and observations should be formulated clearly with supporting arguments, so that Authors can use them for improving the paper. Any selected Reviewer who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the Editor and excuse himself from the review process. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.