TEST FOR LINK MISSPECIFICATION IN GENERALIZED LINEAR MODELS FOR BINARY DATA

Authors

  • Diego Ramos Canterle Aluno de Graduação em Estatística Universidade Federal de Santa Maria.
  • Fábio Mariano Bayer Departamento de Estatística Universidade Federal de Santa Maria

DOI:

https://doi.org/10.5902/2179460X14203

Keywords:

Generalized linear models. Gradient statistic. Link function. Monte Carlo simulations. RESET test.

Abstract

This paper addresses the issue of check the correct specification of the link function in generalized linear models for binary data. To perform the RESET test we consider the likelihood ratio, Wald and score traditional statistics and we propose the use of the emerging gradient statistic. The performance evaluation of misspecification tests were performed using Monte Carlo simulations. The finite sample performance of the tests were evaluated in terms of size and power tests. It can be seen that the performance of the tests are influenced by the used link function and the sample size. The gradient statistic outperforms the traditional statistics, especially in smaller sample sizes. An empirical application to a real data set is considered for illustrative purposes.

Downloads

Download data is not yet available.

Author Biography

Fábio Mariano Bayer, Departamento de Estatística Universidade Federal de Santa Maria

Doutor em Estatística (2011) pela Universidade Federal de Pernambuco (UFPE) e graduado em Matemática (2006) pela Universidade Federal de Santa Maria (UFSM). Atualmente é professor do Departamento de Estatística da UFSM e pesquisador do Laboratório de Ciências Espaciais de Santa Maria (LACESM/CRS/INPE). Possui interesses em métodos estatísticos computacionais, onde suas principais áreas de interesse e atividade são: Inferência Clássica, Teoria Assintótica, Regressão Beta, Critérios de Seleção, Séries Temporais e Processamento de Sinais (algoritmos rápidos, filtragem e compressão de sinais).

References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–726.

Andrade, A. C. G. (2007). Efeitos da especificação incorreta da função de ligação no modelo de regressão beta. Dissertação de Mestrado, Universidade Federal de São Paulo.

Ayalew, L., Yamagishi, H. (2005). The application of gisbased logistic regression for landslide susceptibility mapping in the kakuda-yahiko mountains, central japan. Geomorphology, 65, 15–31.

Bayer, F. M., Cribari-Neto, F. (2013). Bartlett corrections in beta regression models. Journal of Statistical Planning and Inference, 143, 531–547.

Buse, A. (1982). The likelihood ratio, wald and lagrange multiplier tests: An expository note. The American Statistician, Vol. 3, 153–157.

Chen, H. Z., Randallb, A. (1997). Semi-nonparametric estimation of binary response models with an application to natural resource valuation. Journal of Econometrics, 76, 323–340.

Cordeiro, G. M., Demétrio, C. G. (2007). Modelos Lineares Generalizados. Minicurso para o 12o SEAGRO e a 52ª Reunião Anual da RBRAS UFSM, Santa Maria, RS.

Demétrio, C. G. B. (2001). Modelos Lineares Generalizados em Experimentação Agronômica. 46a Reunião Anual da RBRAS e 9o SEAGRO.

Harrell-Jr., F. E., Lee, K. L., Mark, D. B. (1996). Tutorial in biostatistics multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Statistics, 15, 361–387.

Hinkley, D. V. (1985). Transformation diagnostics for linear models. Biometrika, 72, 487–496.

Koenker, R., Yoon, J. (2009). Parametric links for binary choice models: A fisherian-bayesian colloquy. Journal of Econometrics, pp. 120–130.

Lemonte, A. J. (2013). On the gradient statistic under model misspecification. Statistics & Probability Letters, 83(1), 390–398.

Lemonte, A. J., Ferrari, S. L. P. (2012). Local power and size properties of the lr, wald, score and gradient testsin dispersion models. Statistical Methodology, 9, 537–554.

McCullagh, P., Nelder, J. (1989). Generalized linear models, 2o edn. Chapman and Hall.

Nelder, J. A., Wedderburn, R. W. M. (1972). Generalized linear models. Journal of the Royal Statistical Society Series A, 135, 370–384.

Neyman, J., Pearson, E. S. (1928). On the use and interpretation of certain test criteria for purposes of statistical inference. Biometrika, 20, 175–240.

Oliveira, J. S. C. (2013). Detectando má especificação em regressão beta. Dissertação de Mestrado, Universidade Federal de Pernanbuco.

Paula, G. A. (2010). Modelos de Regressão com Apoio Computacional. Editora: IME-USP.

Pereira, T. L., Cribari-Neto, F. (2013). Detecting model misspecification in inflated beta regressions. Communications in Statistics - Simulation and Computation, 43, 631–656.

R Development Core Team (2012). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051- 07-0.

Ramalho, E. A., Ramalho, J. J. S. (2012). Alternative versions of the reset test for binary response index models: A comparative study. Oxford bulletin of economics and statistics, 74, 107–130.

Ramsey, J. B. (1969). Tests for specification errorsin classical linear least-squares regression analysis. Journal of the Royal Statistical Society, Vol. 31, 350–371.

Rao, C. (1948). Large sample tests of statistical hypotheses concerning several parameters with applications to problems of estimation. Mathematical Proceedings of the Cambridge Philosophical Society, 44(01), 50–57.

Terrell, G. (2002). The gradient statistic. Computing Science and Statistics, 34, 206–215.

Vargas, T. M., Ferrari, S. L. P., Lemonte, A. J. (2013). Gradient statistic: Higher-order asymptotics and Bartletttype correction. Electronic Journal of Statistics, 7, 43–61.

Vargas, T. M., Ferrari, S. L., Lemonte, A. J. (2014). Improved likelihood inference in generalized linear models. Computational Statistics and Data Analysis, 74, 110–124.

Wald, A. (1943). Tests of statistical hypotheses concerning several parameters when the number of observations is large. Transactions of the American Mathematical Society, 64, 426–482.

Wasserman, S., Pattison, P. (1996). Logit models and logistic regressions for social networks: I. an introduction to markov graphs andp. Psycometrika, 61, 401–425.

Williams, D. A. (1984). Residuals in generalized linear models. Em: International Biometrics Conference, pp. 59–68.

Published

2015-01-20

How to Cite

Canterle, D. R., & Bayer, F. M. (2015). TEST FOR LINK MISSPECIFICATION IN GENERALIZED LINEAR MODELS FOR BINARY DATA. Ciência E Natura, 37(1), 1–11. https://doi.org/10.5902/2179460X14203

Issue

Section

Statistics

Most read articles by the same author(s)