Fractional calculus modeling of epidemiological problems with spatial structure

Authors

DOI:

https://doi.org/10.5902/2179460X90575

Keywords:

Multipopulation interaction, Fractional differential equations, Disease outbreaks, SIR model

Abstract

The main objective of this work is to investigate the potential of using fractional calculus to model epidemics in interacting populations. In particular, we study compartmental models of the SIR type, with fractional derivatives, to describe the dynamics of the spatial spread of diseases in populations distributed in networks. In the proposed model, we analyze the existence of fixed points and their stability. To investigate the effects introduced into the dynamics by fractional derivatives, numerical results were obtained and comparisons were made between fractional derivative models and integer derivative models.

Downloads

Download data is not yet available.

Author Biographies

Cibelle Abelenda Tavares, Universidade Federal do Rio Grande

Master's degree in progress in Computational Modeling.

Matheus Jatkoske Lazo, Universidade Federal do Rio Grande

PhD in Physics.

References

Allen, L. J. S. (2006). An introduction to Mathematical Biology. Pearson Prentice Hall.

Arino, J. & Vand Den Driesschet, P. (2003). A multi-city epidemic model. Mathematical Population Studies, 10(3):175–193.

Arqub, A. & El-Ajou, A. (2013). Solution of the fractional epidemic model by homotopy analysis method. Journal of King Saud University - Science, 25(1):73–81.

Diethelm, K. (2010). The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer.

Hethcote, H. W. (2000). The mathematics of infectious diseases. SIAM Review, 42(4):599–653.

Keeling, M. J. & Rohani, P. (2008). Modeling Infectious Diseases in Humans and Animals. Princeton University Press.

Kretzschmar, M. & Wallinga, J. (2009). Mathematical models in infectious disease epidemiology. In Alexander, K., Mirjam, K., Klaus, K. (Eds.). Modern infectious disease epidemiology (pp. 70-75). Springer.

Lazo, M. J. & Cezaro, A. (2021). Why can we observe a plateau even in an out of control epidemic outbreak? a seir model with the interaction of n distinct populations for covid-19 in brazil. Trends in Applied and Computational Mathematics, 22(1):109–123.

Luiz, M. H. R. (2012). Modelos matem´aticos em epidemiologia. Master’s thesis, [Dissertaç˜ao, Mestrado, Universidade Estadual Paulista]. Acervo Digital da Unesp.

Marques, J. C., Cezaro, A., & Lazo, M. J. (2022). A sir model with spatially distributed multiple populations interactions for disease dissemination. Trends in Computational and Applied Mathematics, 23(1):143–154.

Nisar, K. S., Farman, M., Abdel-Aty, M., & Cao, J. (2023). A review on epidemic models in sight of fractional calculus. Alexandria Engineering Journal, 75(3):81–113.

Oliveira, D. S. (2012). Introduçao ao C´alculo Fracion´ario. [Monografia de Matem´atica Aplicada, Universidade Federal do Rio Grande, Universidade Federal do Rio Grande].

Rodrigues, E. d. S. (2023). An´alise da eficiˆencia do modelo SIR quando confrontado com dados reais. [Apresentac¸ ˜ao de trabalho]. Anais da I Conferˆencia Internacional de Pol´ıticas P´ublicas e Ciˆencia de Dados do Amazonas / II Conferˆencia de Ciˆencia de Dados para as Ciˆencias Sociais, Universidade do Estado do Amazonas.

Sabatier, J., Agrawal, O. P., & Machado, J. A. T. (2007). Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer.

Tavares, C. A. (2021). Sistemas dinˆamicos com derivadas fracion´arias aplicado a problemas de populac¸ ˜oes interagentes. Anais do X Encontro Regional de Matem´atica Aplicada e Computacional do Rio Grande do Sul – X ERMAC-RS, 9(3):21–27.

Tavares, C. A. & Lazo, M. J. (2022). Dynamic systems with fractional derivatives applied to interagent populations problems. Trends in Computational and Applied Mathematics, 23(2):299–314.

Downloads

Published

2025-02-14

How to Cite

Tavares, C. A., & Lazo, M. J. (2025). Fractional calculus modeling of epidemiological problems with spatial structure. Ciência E Natura, 47(esp. 1). https://doi.org/10.5902/2179460X90575

Issue

Section

IV Jornada de Matematica e Matematica aplicada UFSM

Most read articles by the same author(s)