Study of patterns of emerging clusters in a dynamic of chase and escape

Authors

DOI:

https://doi.org/10.5902/2179460X37562

Keywords:

Model based on agents, Stochastic dynamics, Emerging clusters

Abstract

A stochastic agent-based model was developed to study the motion and cluster formation in systems made up of prey and predators. A discrete virtual lattice was set up, where two types of agents could move, one type behaving as prey and was designed to move away from the second type, which acted like a predator. In this model, the primary goal was to study the movement patterns formed by the chase dynamics keeping fixed the number of these individuals in each simulation. The move rules were based on the asymmetric random walk, which applied to these two types of agents to change their behaviors to perform a Brownian motion when they are far apart. However, the chase dynamics got more intense when these two types got close. To analyze the conditions in which the clusters emerge, the initial concentrations of the two types of agents were varied, and the σ parameter acted like a mediator, amplifying or attenuating the “forces” of attraction/repulsion between the individuals. The simulations revealed the migration patterns of randomly spawned agents in the lattice, and we counted the number of the clusters on average over time.

Downloads

Download data is not yet available.

Author Biographies

Pedro Henrique Fernandes Lobo, Universidade Federal do Rio Grande, Rio Grande, RS

Possui graduação em Física pela Universidade Federal de Ouro Preto (2017) e mestrado em Física pela Universidade Federal do Rio Grande (2019). , atuando principalmente nos seguintes temas: forrageamento, quirópteros, simulação computacional, física computacional e modelo baseado e agentes.

Suzielli Martins Mendonça, Universidade Federal do Rio Grande, Rio Grande, RS

Graduanda do curso de Física Bacharelado (com ênfase em Física Médica) da Universidade Federal do Rio Grande - FURG, tem experiência na área da Física dos Oceanos, com ênfase na modelagem numérica. Durante a graduação foi bolsista do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) no Laboratório de Análise Numérica e Sistemas Dinâmicos (LANSD), desenvolvendo um modelo numérico 3D de movimento de embarcações - SHIPMOVE. Atualmente, participa do projeto de modelagem estocástica e transições de fase e do projeto de auxílio da tecnologia 3D na Física Experimental, no Laboratório de Impressão Científica, Educacional e Tecnológica (LICET).

Matheus Jatkoske Lazo, Universidade Federal do Rio Grande, Rio Grande, RS

possui bacharelado em Física pela Universidade de São Paulo (1999), mestrado em Física pela Universidade de São Paulo (2002) e doutorado em Física pela Universidade de São Paulo (2006). Atualmente é professor associado da Universidade Federal do Rio Grande - FURG, e integra o Comitê de Assessoramento Técnico Científico na área de Física e Astronomia da Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul - FAPERGS. 

Everaldo Arashiro, Universidade Federal do Rio Grande, Rio Grande, RS

Atualmente é professor associado II, DE, do Instituto de Matemática, Estatística e Física (IMEF) da Universidade Federal do Rio Grande (FURG), compõe o corpo docente dos Programas de Pós-Graduação em Ambientometria e o de Física, ambos do IMEF-FURG, e é coordenador do Mestrado Nacional Profissional em Ensino de Física - Polo 21 FURG.

References

Arashiro, E., Rodrigues, a. L., de Oliveira, M. J., Tomé, T. (2008). Time correlation function in systems with two coexisting biological species. Physical Review E, 77(6), 061,909.

Argolo, C., Barros, P., Tomé, T., Arashiro, E., Gleria, I., Lyra, M. L. (2016). Threshold of coexistence and critical behavior of a predator-prey stochastic model in a fractal landscape. Journal of Statistical Mechanics: Theory and Experiment, 2016(8), 083,204.

Boccara, N., Roblin, O., Roger, M. (1994). Automata network predator-prey model with pursuit and evasion. Phys Rev E, 50, 4531–4541.

Chen, L. (2012). Agent-based modeling in urban and architectural research: A brief literature review. Frontiers of Architectural Research, 1(2), 166–177.

Clarke, K. C. (2014). Handbook of Regional Science, vol 54, Springer Berlin Heidelberg, Berlin, Heidelberg, Cap. 62, pp. 1217–1231.

Elsasser, W. M. (1981). Principles of a new biological theory: A summary. Journal of Theoretical Biology, 89(1), 131 – 150.

Garifullin, M., Borshchev, A., Popkov, T. (2007). Using Anylogic and Agent-Based Approach To Model Consumer Market. EUROSIM 2007, Ljubljana, Slovenia, pp. 1–5.

Huynh, N., Cao, V., Wickramasuriya, R. (2014). An Agent Based Model for the Simulation of Road Traffic and Transport Demand in A Sydney Metropolitan Area. 8th International Workshop on Agents in Traffic and Transportation (ATT-2014), pp. 1–7.

Keesen, F., e Silva, A. C., Arashiro, E., Pinheiro, C. (2017). Simulations of populations of sapajus robustus in a fragmented landscape. Ecological Modelling, 344, 38 – 47.

Kirchner, A., Schadschneider, A. (2002). Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Physica A: Statistical Mechanics and its Applications, 312(1-2), 260–276, 0203461.

Lotka, A. J. (1926). Elements of physical biology. Science Progress in the Twentieth Century (1919-1933), 21(82), 341–343.

Perez, L., Dragicevic, S. (2009). An agent-based approach for modeling dynamics of contagious disease spread. International Journal of Health Geographics, 8(1), 1–17.

Ruziska, F. M., Arashiro, E., Tomé, T. (2018). Stochastic dynamics for two biological species and ecological niches. Physica A: Statistical Mechanics and its Applications, 489, 56 – 64.

Satulovsky, J. E., Tomé, T. (1994). Stochastic lattice gas model for a predator-prey system. Phys Rev E, 49, 5073–5079.

Schnakenberg, J. (1977). G. Nicolis und I. Prigogine: Self-Organization in Nonequilibrium Systems. From Dissipative Structures to Order through Fluctuations. J. Wiley & Sons, New York, London, Sydney, Toronto 1977. 491 Seiten, Preis: £ 20.-, $ 34.-. Berichte der Bunsengesellschaft für physikalische Chemie, 82(6), 672–672.

Secchi, D. (2015). A case for agent-based models in organizational behavior and team research. Team Performance Management: An International Journal, 21(1/2), 37–50.

Volterra, V. (1990). Leçons sur la théorie mathématique de la lutte pour la vie. J. Gabay, Paris.

Published

2020-12-06

How to Cite

Lobo, P. H. F., Mendonça, S. M., Lazo, M. J., & Arashiro, E. (2020). Study of patterns of emerging clusters in a dynamic of chase and escape. Ciência E Natura, 42, e48. https://doi.org/10.5902/2179460X37562

Issue

Section

40 YEARS - Anniversary Special Edition