Impact of climate change on grape composition: a review

Authors

DOI:

https://doi.org/10.5902/2179460X75359

Keywords:

Vineyard, Phenolic compounds, Physical-chemical composition, Global warming, Viticulture

Abstract

The objective of this study was to prepare a literature review on the main implications of climate change for the composition of grapes and wine. A literature review was carried out with articles, books, and other scientific materials available in internet databases for indexing terms. A systematic literature review was adopted to prepare this review. Initially, the question for the development of the research was formulated. Soon after the search strategy was defined, the search for manuscripts related to the subject in the databases began. The manuscripts were selected for their relevance and relationship with the key subject of this review. Results inferred that the problems caused by the greenhouse effect, not only globally but also at regional and local levels, are worrying for the agricultural sector. In Brazil, projections for the end of the century indicate an increase of approximately 2°C in temperature, and the vine is a crop highly influenced by the climate, considered a factor of utmost importance for its development, productivity, and quality in the vineyard. Studies have shown that climate change causes changes in temperature, solar radiation, water, and CO2, consequently compromising the composition of sugars, organic acids, phenolic compounds and aromatic compounds, in grapes and wine. It is concluded that the problems caused by climate change in both the composition of grapes and wine are worrying, as they can cause great losses for producers and vineyards. However, more studies and research are needed to propose strategies that can minimize the effects of climate implications.

Downloads

Download data is not yet available.

Author Biographies

Keila Garcia Aloy, Universidade Federal de Pelotas

Bacharel em Enologia,

Mestranda em Agronomia, área de Fruticultura de Clima temperado, Universidade Federal de Pelotas. 

Amanda Radmann Bergmann, Universidade Federal de Pelotas

Nutricionista, 

Mestre em Nutrição e Alimentos

Doutoranda em Agronomia, área de Fruticultura de Clima Temperado, Universidade Federal de Pelotas. 

 

Vagner Brasil Costa, Universidade Federal de Pelotas

Engenheiro Agronômo - Universidade Federal de Pelotas

Tecnólogo em Viticultura e Enologia

Mestrado e doutorado em Agronomia  pela Universidade Federal de Pelotas. 

Professor Adjunto de Fruticultura da Universidade Federal de Pelotas- Faculdade de Agronomia Eliseu Maciel.

Professor Colaborador do Programa de Pós Graduação em Agronomia- Concentração em Fruticultura de Clima Temperado - Universidade Federal de Pelotas (UFPel). 

Marcelo Barbosa Malgarim, Universidade Federal de Pelotas

Graduação em Agronomia pela Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS (2000), Mestrado em Fruticultura de Clima Temperado pela Universidade Federal de Pelotas - UFPel (2003), Doutorado em Fruticultura de Clima Temperado pela Universidade Federal de Pelotas - UFPel (2005).  Professor de Fruticultura no Departamento de Fitotecnia e Coordenador do Programa de Pós-graduação em Agronomia - PPGA, na Faculdade de Agronomia Eliseu Maciel - FAEM, da Universidade Federal de Pelotas - UFPel.

References

Afifi, M., Obenland, D., & El-Kereamy, A. (2021). The Complexity of Modulating Antho-cyanin Biosynthesis Pathway by Deficit Irrigation in Table Grapes. Front. Plant Sci., 12, 1–19. DOI: https://doi.org/10.3389/fpls.2021.713277

Alem, H., Ojeda, H., Rigou, P., Schneider, R., & Torregrosa, L. (2021). The reduction of plant sink/source does not systematically improve the metabolic composition of Vitis vinifera white fruit. Food Chemistry, 345, 128825. DOI: https://doi.org/10.1016/j.foodchem.2020.128825

Assad, E. D., Martins, S.C., Beltrão, N.E.M., & Pinto, H.S. (2013). Impacts of climate change on the agricultural zoning of climate risk for DOI: https://doi.org/10.1590/S0100-204X2013000100001

cotton cultivation in Brazil. Pesq. agropec. Bras., 48(1), 1–8.

Arrizabalaga-Arriazu, M., Gomès, E., Morales, F., Irigoyen, J.J., Pascual, I., & Hilbert, G. (2020) High Temperature and Elevated Carbon Dioxide Modify Berry Composi-tion of Different Clones of Grapevine (Vitis vinifera L.) cv. Tempranillo. Front. Plant Sci. 11:603687. DOI: https://doi.org/10.3389/fpls.2020.603687

Ayenew, B., Degu, A., Manela, N., Perl, A., Shamir, M.O., & Fait, A. (2015). Metabolite profiling and transcript analysis reveal specificities in the response of a berry derived cell culture to abiotic stresses. Front. Plant Sci., 6, 1–14. DOI: https://doi.org/10.3389/fpls.2015.00728

Blanco-Ward, D., Ribeiro, A., Barreales, D., Castro, J., Verdial, J., Feliciano, M., Viceto, C. Rocha, A., Carlos, C., Silveira, C., Miranda, A. (2019). Climate change potential ef-fects on grapevine bioclimatic indices: A case study for the Portuguese demar-cated Douro Region (Portugal). BIO Web Conf, 12, 01013. DOI: https://doi.org/10.1051/bioconf/20191201013

Bonada, M., Edwards, E.J., McCarthy, M.G., Sepúlveda, G.C., Petrie, P.R. (2020). Impact of Low Rainfall during Dormancy on Vine Productivity and Development. Aust. J. Grape Wine Res., 26, 325–342. DOI: https://doi.org/10.1111/ajgw.12445

Carreiras, J., Cruz-Silva, A., Fonseca, B., Carvalho, R.C., Cunha, J.P., Proença Pereira, J., Paiva-Silva, C., A. Santos, S., Janeiro Sequeira, R., Mateos-Naranjo, E., Rodríguez-Llorente, I.D., Pajuelo, E., Redondo-Gómez, S., Matos, A.R., Mesa-Marín, J., Figuei-redo, A., Duarte, B.

(2023). Improving grapevine heat stress resilience with marine plant growth-promoting rhizobacteria consortia. Microorganisms, 11, 856. DOI: https://doi.org/10.3390/microorganisms11040856

Cera, J. C., & Ferraz, S. E. T. (2015). Variações climáticas na precipitação no sul do Bra-sil no clima presente e futuro. Revista Brasileira de Meteorologia, 30 (1), 81–88. DOI: https://doi.org/10.1590/0102-778620130588

Costa, J.M., Vaz, M., Escalona, J., Egipto, R., Lopes, C., Medrano, H., & Chaves, M.M. (2016). Modern viticulture in southern Europe: Vulnerabilities and strategies for adaptation to water scarcity. Agricultural Water Management, 164 (1), 5-18. DOI: https://doi.org/10.1016/j.agwat.2015.08.021

Dai, A., Zhao, T., & Chen, J. (2018). Climate change and drought: a precipitation and evaporation perspective. Current Climate Change Reports, 4, 301-312. DOI: https://doi.org/10.1007/s40641-018-0101-6

Droulia, F., & Charalampopoulos, I. (2022). A review on the observed climate change in europe and its impacts on viticulture. Atmos., 13(5), 837. DOI: https://doi.org/10.3390/atmos13050837

Durand, M., Mainson, D., Porcheron, B., Maurousset, L., Lemoine, R.,& Pourtau, N. (2018). Carbon source–sink relationship in Arabidopsis thaliana: the role of su-crose transporters. Planta, 247(3), 587–611. DOI: https://doi.org/10.1007/s00425-017-2807-4

Ferrero-del-Teso, S., Suárez, A., Jeffery, D.W., Ferreira, V., Fernández-Zurbano, P., & Sáenz-Navajas, M.P. (2020). Sensory variability associated with anthocyanic and tannic fractions isolated from red wines. Food Res. Int.,136,109340. DOI: https://doi.org/10.1016/j.foodres.2020.109340

Fonseca, A., Fraga, H., & Santos, J.A. (2023). Exposure of Portuguese viticulture to weather extremes under climate change. Climate Services, 30, 100357. DOI: https://doi.org/10.1016/j.cliser.2023.100357

Fraga, H., Molitor, D., Leolini, L., & Santos, J.A. (2020). What Is the Impact of Heatwaves on European Viticulture? A Modelling Assessment. Appl. Sci., 10, 3030. DOI: https://doi.org/10.3390/app10093030

Fraga, H., & Santos, J.A. (2018). Vineyard mulching as a climate change adaptation measure: Future simulations for Alentejo, Portugal. Agricultural Systems, 164, 107-115. DOI: https://doi.org/10.1016/j.agsy.2018.04.006

Fraga, H., Atauri, I.G.C., Malheiro, A.C., & Santos, J.A. (2016). Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe. Global Change Biology, 22(11), 3774–3788. DOI: https://doi.org/10.1111/gcb.13382

Galvão, T.F., & Pereira, M.G. (2014). Systematic reviews of the literature: steps for preparation. Epidemiol. Serv. Saúde, 23(1), 183-184. DOI: https://doi.org/10.5123/S1679-49742014000100018

Gambetta, J. M., Holzapfel. B.R., Stoll, M., & Friedel, M. (2021). Sunburn in Grapes: A Review. Front. Plant Sci., 11, 1-21. DOI: https://doi.org/10.3389/fpls.2020.604691

Garrido, J., & Borges, F. (2013). Wine and grape polyphenols — A chemical perspec-tive. Food Research International, 54(2), 1844–1858. DOI: https://doi.org/10.1016/j.foodres.2013.08.002

Gashu, K., Persi, N.S., Drori, E., Harcavi, E., Agam, N., Bustan, A., & Fait, A. (2020). Tem-perature Shift Between Vineyards Modulates

Berry Phenology and Primary Me-tabolism in a Varietal Collection of Wine Grapevine. Front. Plant Sci., 11, 1–23.

Giampieri, F., Forbes-Hernandez, T.Y., Gasparrini, M., Alvarez-Suarez, J.M., Afrin, S., Bompadre, S., Quiles, J.L., Mezzetti, B., & Battino, M. (2015). Strawberry as a health promoter: an evidence based review. Food & Function, 6(5), 1386–1398. DOI: https://doi.org/10.1039/C5FO00147A

Gouot, J. C., Smith, J.P., Holzapfel, B.P., & Barril, C. (2019). Grape Berry Flavonoid Re-sponses to High Bunch Temperatures Post Véraison: Effect of Intensity and Du-ration of Exposure. Molecules, 24(23), 4341. DOI: https://doi.org/10.3390/molecules24234341

Griesser, M., Weingart, G., Schoedl-Hummel, K., Neumann, N., Varmuza, K., Liebner, F., Schuhmacher, R., & Forneck, A. (2015). Severe drought stress is affecting se-lected primary metabolites, polyphenols, and volatile metabolites in grapevine leaves (Vitis vinifera cv. DOI: https://doi.org/10.1016/j.plaphy.2015.01.004

Pinot noir). Plant Physiol Biochem., 88, 17–26.

Gutiérrez-Escobar, R., Aliaño-González, M. J., & Cantos-Villar, E. (2021). Wine polyphe-nol content and its influence on wine quality and properties: A review. Molecules, 26(3), 718. DOI: https://doi.org/10.3390/molecules26030718

Gutiérrez-Gamboa, G., Zheng, W., & De Toda, F.M. (2021). Current viticultural tech-niques to mitigate the effects of global warming on grape and wine quality: A comprehensive review. Food Research International, 139, 109946. DOI: https://doi.org/10.1016/j.foodres.2020.109946

Ingram, W. (2016). Increases All Round. Nat. Clim. Chang., 6(5), 443-444. DOI: https://doi.org/10.1038/nclimate2966

Ivanova-Petropulos, V., Petruševa, D., & Mitrev, S. (2020). Rapid and Simple Method for Determination of Target Organic Acids in Wine DOI: https://doi.org/10.1007/s12161-020-01724-4

Using HPLC-DAD Analysis. Food Analytical Methods, 13(5), 1078–1087.

Jones, G.V., Edwards, E.J., Bonada, M., Sadras, V.O., Krstic, M.P.,& Herderich, M.J. (2022). 17 - Climate change and its consequences for viticulture. In Woodhead Pub-lishing Series in Food Science, Technology and Nutrition, Managing Wine Quali-ty, (2ª ed.), 727-778. DOI: https://doi.org/10.1016/B978-0-08-102067-8.00015-4

Kizildeniz, T., Mekni, I., Santesteban, H.,& Pascual, I. (2015). Effects of climate change including elevated CO2 concentration, temperature and water deficit on growth, water status, and yield quality of grapevine (Vitis vinifera L.) cultivars. Agricultural Water Management, 159, 155–164. DOI: https://doi.org/10.1016/j.agwat.2015.06.015

Lecourieux, F. (2017). Dissecting the Biochemical and Transcriptomic Effects of a Lo-cally Applied Heat Treatment on Developing Cabernet Sauvignon Grape Berries. Front. Plant Sci., 8, 1-23. DOI: https://doi.org/10.3389/fpls.2017.00053

Leolini, L., Moriondo, M., Fila, G., Costafreda-Aumedes, S., Ferrise, R., & Bindi, M. (2018). Late spring frost impacts on future grapevine distribution in Europe. Field Crops Research, 222, 197-208. DOI: https://doi.org/10.1016/j.fcr.2017.11.018

Lima, M.M.M., Choy, Y.Y., Tran, J., Lydon, M., & Runnebaum, R.C. (2022). Organic acids characterization: wines of Pinot noir and juices of ‘Bordeaux grape varieties.’ Journal of Food Composition and Analysis, 114, 104745. DOI: https://doi.org/10.1016/j.jfca.2022.104745

Lovisolo, C., Perrone, I., Carra, A., & Ferrandino, A. (2010). Drought-induced changes in development and function of grapevine (Vitis spp.) organs and in their hy-draulic and non-hydraulic interactions at the whole-plant level: a physiological and molecular update. DOI: https://doi.org/10.1071/FP09191

Functional Plant Biology, 37(2), 98.

Martínez-Lüscher, J., Chen, C.C.L., Brillante, L., & Kurtural, S.K. (2020). Mitigating Heat Wave and Exposure Damage to “Cabernet Sauvignon” Wine Grape With Partial Shading Under Two Irrigation Amounts. Front. Plant Sci., 11, 1–15. DOI: https://doi.org/10.3389/fpls.2020.579192

Martínez-Lüscher, J., Morales, F., Sánchez-Dias, M., Delrot, S., Aguirreolea, J., & Gomès, E., Pascual, I. (2015). Climate change conditions (elevated CO2 and temperature) and UV-B radiation affect grapevine (Vitis vinifera cv. Tempranillo) leaf carbon as-similation, altering DOI: https://doi.org/10.1016/j.plantsci.2015.04.001

fruit ripening rates. Plant Sci., 236, 168–176.

Meggio, F. (2022). The interplay between grape ripening and weather anomalies in northern Italy– A modelling exercise. Oeno One, 56(2), 353. DOI: https://doi.org/10.20870/oeno-one.2022.56.2.5438

Mihailescu, E., & Soares, M.B. (2020). The Influence of climate on agricultural deci-sions for three European crops: A systematic review. Front. Sustain. Food Syst., 4, 1–10. DOI: https://doi.org/10.3389/fsufs.2020.00064

Modesti, M., Shmuleviz, R., Macaluso, M., Bianchi, A., Venturi, F., Brizzolara, S., Zinnai, A., & Tonutti, P. (2021). Pre-processing cooling of harvested grapes induces changes in berry composition and metabolism, and affects quality and aroma traits of the resulting wine. DOI: https://doi.org/10.3389/fnut.2021.728510

Frontiers in Nutrition, 8, 1–15.

Morales-Castilla, I., Cortázar-Atauri, I.G, Cook, B.I., Lacombe, T., Parker, A., Van Leeu-wen, C., Nicholas, K.A., & Wolkovich, E.M. (2020). Diversity buffers winegrowing regions from climate change losses. Proceedings National Academy Sci., 117(6), 2864–2869. DOI: https://doi.org/10.1073/pnas.1906731117

Nemzer, B., Kalita, D., Yashin, A.Y., & Yashin, Y.I. (2021). Chemical Composition and Polyphenolic Compounds of Red Wines: Their Antioxidant Activities and Effects on Human Health—A Review. Beverages, 8(1), 1-28. DOI: https://doi.org/10.3390/beverages8010001

Nobre, C. A., Marengo, J. A., Soares, W. R., Assad, E., Schaeffer, R., Scarano, F. R., & Ha-con, S. S. (2012). No Brasil e Limites à Adaptação. 1. ed. São José dos Campos: Ins-tituto Nacional de Pesquisa, 44.

Ollat, N., Van Leeuwen, C., Atauri, I.G.C., & Touzard, J.M. (2017). The challenging issue of climate change for sustainable grape and wine production. Oeno One, 51(2). DOI: https://doi.org/10.20870/oeno-one.2016.0.0.1872

Pessenti, I. L., Ayub, R. A., Melo, H. F., Martins, W. S., Wiecheteck, L. H., & Botelho, R. V. (2021). Qualidade fenólica em cultivares de uva submetida a poda verde e regu-lador Hormonal. Research, Society and Development, 10(4), 39310414227. DOI: https://doi.org/10.33448/rsd-v10i4.14227

Pott, D. M., Osorio, S., & Vallarino, J. G. (2019). From Central to Specialized Metabo-lism: An Overview of Some Secondary Compounds Derived From the Primary Metabolism for Their Role in Conferring Nutritional and Organoleptic Character-istics to Fruit. Front. Plant DOI: https://doi.org/10.3389/fpls.2019.00835

Sci., 10.

Ramos, M.C.,& Yuste, J. (2023). Grapevine phenology of white cultivars in Rueda Des-ignation of Origin (Spain) in response to weather conditions and potential shifts under warmer climate. Agronomy, 13(1), 146. DOI: https://doi.org/10.3390/agronomy13010146

Ramos, M.C., Pérez-Álvarez, E.P., Peregrina, F., & de Toda, F.M. (2020). Relationships between grape composition of Tempranillo variety and available soil water and water stress under different weather conditions. Scientia Horticulturae, 262, 109063. DOI: https://doi.org/10.1016/j.scienta.2019.109063

Ramos, M.C. (2017). Projection of phenology response to climate change in rainfed vineyards in north-east Spain. Agricultural and Forest Meteorology, 247, 104–115. DOI: https://doi.org/10.1016/j.agrformet.2017.07.022

Ren, R., Yue, X., Li, J., Xie, S., Guo, S., & Zhand, Z. (2020). Coexpression of Sucrose Syn-thase and the SWEET Transporter, Which Are Associated With Sugar Hydrolysis and Transport, Respectively, Increases the Hexose Content in Vitis vinifera L. Grape Berries. Front. DOI: https://doi.org/10.3389/fpls.2020.00321

Plant Sci., 11, 1–15.

Rienth, M., Vigneron, N., Darriet, P., Swetman, C., Burbidge, C., Bonghi, C., & Walker, R.P., Famiani, F., Castellarin, S.D. (2021). Grape Berry Secondary Metabolites and Their Modulation by Abiotic Factors in a Climate Change Scenario–A Review. Front. Plant Sci., 12, 1–26. DOI: https://doi.org/10.3389/fpls.2021.643258

Robles, A., Fabjanowicz, M., Chmiel, T., & Płotka-Wasylka, J. (2019). Determination and identification of organic acids in wine samples. Problems and challenges. TrAC Trends in Analytical Chemistry, 120, 115630. DOI: https://doi.org/10.1016/j.trac.2019.115630

Romero, H., Pott, D.M., Vallarino, J.G., & Osorio, S. (2021). Metabolomics-Based Evalu-ation of Crop Quality Changes as a Consequence of Climate Change. Metabolites, 11(7), 461. DOI: https://doi.org/10.3390/metabo11070461

Rufato, L., Marcon Filho, J. L., Brighenti, A. F., Amauri, B., & Kretzschmar, A. A. (2021). A cultura da videira: vitivinicultura de altitude. Editora UDESC, Série Fruticultura, 577.

Rustioni, L., Rocchi, L., Guffanti, E., Cola, G., & Failla, O. (2014). Characterization of Grape (Vitis vinifera L.) Berry Sunburn Symptoms by Reflectance. J Agric and Food Chem., 62(14), 3043–3046. DOI: https://doi.org/10.1021/jf405772f

Sadras, V. O., & Moran, M. A. (2012). Elevated temperature decouples anthocyanins and sugars in berries of Shiraz and Cabernet Franc. Australian Journal of Grape and Wine Research, 18(2), 115–122. DOI: https://doi.org/10.1111/j.1755-0238.2012.00180.x

Santos, R.B., & Figueiredo, A. (2023). Biotic and abiotic stress management in grape-vine: Recent advances and major breakthroughs. Agronomy, 13(6), 1584. DOI: https://doi.org/10.3390/agronomy13061584

Santos, J.A., Fraga, H., Malheiro, A.C., Moutinho-Pereira, J., Dinis, L.T., Correia, C., Mori-ondo, M., Leolini, L., Dibari, C., Costafreda-Aumedes, S., Kartschall, T., Menz, C., Molitor, D., Junk, J., Beyer, M., & Schultz, H.R. (2020). A review of the potential climate change

impacts and adaptation options for European viticulture. Appl. Sci., 10(9), 3092. DOI: https://doi.org/10.3390/app10093092

Santos, D.F., Martins, F.B., & Torres, R.R. (2017). Impacts of climate projections on wa-ter balance and implications on olive crop in Minas Gerais. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(2), 77–82. DOI: https://doi.org/10.1590/1807-1929/agriambi.v21n2p77-82

Savoi, S., Wong, D.C.J., Degu, A., Herrera, J.C., Bucchetti, B., Peterlunger, E., Fait, A., Mattivi, F., & Castellarin, S.D. (2017). Multi-omics and integrated network anal-yses reveal new insights into the systems relationships between metabolites, structural genes, and

transcriptional regulators in developing grape berries (Vi-tis vinifera L.) exposed to water deficit. Front. Plant Sci. 8:1124.

Sgroi, F.,& Sciancalepore, V.D. (2022). Climate change and risk management policies in viticulture. Journal of Agriculture and Food Research, 10, 100363. DOI: https://doi.org/10.1016/j.jafr.2022.100363

Sirén, H., Sirén, K., & Sirén, J. (2015). Evaluation of organic and inorganic compounds levels of red wines processed from Pinot Noir grapes. Analytical Chemistry Re-search, 3, 26–36. DOI: https://doi.org/10.1016/j.ancr.2014.10.002

Skirycz, A., & Inzé, D. (2010). More from less: plant growth under limited water. Cur-rent Opinion in Biotechnology, 21(2), 197–203. DOI: https://doi.org/10.1016/j.copbio.2010.03.002

Stein, T., Carvalho, I. R., Zocche, R. G., Jacobs, S. A., Szareski, V. J., Zocche, F., Aloy, K. G., Santos, L.V., Martins, H. C. G., Rosa, T. C., &

Souza, V. Q. (2018). Climatic variables and their effects on phenolic maturation and potassium uptake in Cabernet Sauvignon wines. Journal of Agricultural Science, 10 (8). DOI: https://doi.org/10.5539/jas.v10n8p388

Straffelini, E., Carrillo, N., Schilardi, C., Aguilera, R., Orrego, M.J.E., & Tarolli, P. (2023). Viticulture in Argentina under extreme weather scenarios: Actual challenges, fu-ture perspectives. Geography and Sustainability, 4(2), 161-169. DOI: https://doi.org/10.1016/j.geosus.2023.03.003

Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., & Midgley, P. M. (2013). Intergovernamental Panel on Climate Change - Summary for Policymaker. Cambridge: Cambridge University Press.

Sweetman, C., Sadras, V.O., Kancock, R.D., Soole, & K.L., Ford, C.M. (2014). Metabolic effects of elevated temperature on organic acid degradation in ripening Vitis vi-nifera fruit. Journal of Experimental Botany, 65(20), 5975–5988. DOI: https://doi.org/10.1093/jxb/eru343

Teker, T. (2023). A study of kaolin effects on grapevine physiology and its ability to protect grape clusters from sunburn damage. Scientia Horticulturae, 311, 111824. DOI: https://doi.org/10.1016/j.scienta.2022.111824

Templ, B., Templ, M., Barbieri, R., Meier, M.,& Zufferey, V. (2021). Coincidence of tem-perature extremes and phenological events of grapevines. Oeno One, 55(1), 367-383. DOI: https://doi.org/10.20870/oeno-one.2021.55.1.3187

Tinyane, P. P., Soundy, P., & Sivakumar, D. (2018). Growing ‘Hass’ avocado fruit under different coloured shade netting improves the marketable yield and affects fruit ripening. Scientia Horticulturae, 230, 43–49. DOI: https://doi.org/10.1016/j.scienta.2017.11.020

Torres, N., Martínez-Lüscher, J., Porte, E., & Kurtural S.K. (2020). Optimal Ranges and Thresholds of Grape Berry Solar Radiation for Flavonoid Biosynthesis in Warm Climates. Front. Plant Sci., 11, 1–15. DOI: https://doi.org/10.3389/fpls.2020.00931

Torres, R. R., Lapola, D. V., Marengo, J. A., & Lombardo, M.A. (2012). Socio-climatic hotspots in Brazil. Climatic Change, 115(4), 597–609. DOI: https://doi.org/10.1007/s10584-012-0461-1

Van Leeuwen, C.,& Darriet, P. (2016). The Impact of Climate Change on Viticulture and Wine Quality. Journal of Wine Economics, 11, 1, DOI: https://doi.org/10.1017/jwe.2015.21

–167.

Vandeleur, R. K., Mayo, G., Shelden, M.C., Gilliham, M., Kaiser, B.N., & Tyerman, S.D. (2009). The Role of Plasma Membrane Intrinsic Protein Aquaporins in Water Transport through Roots: Diurnal and Drought Stress Responses Reveal Differ-ent Strategies between DOI: https://doi.org/10.1104/pp.108.128645

Isohydric and Anisohydric Cultivars of Grapevine. Plant Physiol, 149(1), 445–460.

Vieira, A. C. P., Garcia, J. R., & Bruch, K. L. (2015). Análise exploratória dos potenciais efeitos das mudanças climáticas nos “vales da uva goethe.” Ambiente & Socie-dade, 18,(3), 171–192. DOI: https://doi.org/10.1590/1809-4422ASOC885V1832015

Waterhouse, A. L., Sacks, G. L., & Jeffery, D. W. (2016). Understanding Wine Chemistry. 1. ed. Chichester: John Wiley & Sons. DOI: https://doi.org/10.1002/9781118730720

Woldemeskel, F.M., Sharma, A., Sivakumar, B., & Mehrotra, R. (2016). Quantification of precipitation and temperature uncertainties simulated by CMIP3 and CMIP5 models. Journal of Geophysical Research: Atmospheres, 121 (1), 3–17. DOI: https://doi.org/10.1002/2015JD023719

Xu, F., Xi, Z., Zhang, H., Zhang, C., & Zhang, Z. (2015). Brassinosteroids are involved in controlling sugar unloading in Vitis vinifera ‘Cabernet Sauvignon’ berries during véraison. Plant Physiology and Biochemistry, 94, 197–208. DOI: https://doi.org/10.1016/j.plaphy.2015.06.005

Zocche, R. G. S., Jacobs, S. A., Sampaio, N. V., Souza, V. Q., Carvalho, I. R., Nardino, M., Rizzon, L. A., & Rombaldi, C. V. (2017). Wines produced with 'Cabernet Sauvi-gnon' grapes from the region of Bagé in the state of Rio Grande do Sul, Brazil. Pesq. agropec. Bras., DOI: https://doi.org/10.1590/s0100-204x2017000500004

(5), 311-318.

Published

2024-09-06

How to Cite

Aloy, K. G., Bergmann, A. R., Costa, V. B., & Malgarim, M. B. (2024). Impact of climate change on grape composition: a review. Ciência E Natura, 46, e75359. https://doi.org/10.5902/2179460X75359

Most read articles by the same author(s)