Concrete production with brewing industry waste

Authors

DOI:

https://doi.org/10.5902/2179460X75292

Keywords:

Sustainability, Non-structural concrete, Diatomaceous earth, Fine aggregate

Abstract

The productive sectors seek to rethink their activities to minimize their negative contribution to the climate, including solid waste generated by different areas. The use of waste from a productive sector in another productive sector can minimize the consequences of the current environmental degradation. In this study, the fine aggregate (sand) was partially replaced with diatomaceous earth waste from brewery filters without extensive treatment in concrete production. Concrete dosages were prepared with 0% (reference), 2.5%, 5%, and 10% w/w/replacement of diatomaceous earth waste and evaluated for axial compressive strength, diametral tensile strength, modulus of elasticity, specific mass, water absorption, and void ratio. The one-way analysis of variance (ANOVA), with a significance of 5%, tested the differences, followed by the Tukey-Kramer test for pairwise comparisons. All mixtures with replacements were significantly different from the reference mixture, but the results showed that it is possible to use the waste as a partial substitute for sand in the non-structural concrete production. Thus, it is possible to decrease the amount of natural sand and, at the same time, reduce the environmental liabilities of the brewing industry, creating some possibilities in the management of solid waste and mitigation in the exploitation of non-renewable natural reserves.

Downloads

Download data is not yet available.

Author Biographies

Andres Alberto Sebben, Universidade Estadual do Oeste do Paraná

Degree in Civil Engineering from Faculdade Assis Gurgacz.

Gustavo Savaris, Universidade Tecnológica Federal do Paraná

PhD in Civil Engineering from the Federal University of Santa Catarina.

Cleber Antonio Lindino, Universidade Estadual do Oeste do Paraná

PhD in Chemistry from the Federal University of São Carlos.

References

ABNT - Associação Brasileira de Normas Técnicas (1998). Concreto – Determinação da consistência pelo abatimento do tronco de cone. NBR NM 67. Rio de Janeiro: ABNT.

ABNT – Associação Brasileira de Normas Técnicas. (2009a). Argamassa e concreto endurecidos - Determinação da absorção de água, índice de vazios e massa específica. NBR 9778. Rio de Janeiro: ABNT.

ABNT– Associação Brasileira de Normas Técnicas. (2009b). Concreto fresco - Determinação da massa específica, do rendimento e do teor de ar pelo método gravimétrico. NBR 9833. Rio de Janeiro: ABNT.

ABNT – Associação Brasileira de Normas Técnicas. (2010). Materiais pozolânicos – Determinação do teor de hidróxido de cálcio fixado – Método Chapelle modificado. NBR 15895. Rio de Janeiro: ABNT.

ABNT – Associação Brasileira de Normas Técnicas. (2011). Concreto e argamassa — Determinação da resistência à tração por compressão diametral de corpos de prova cilíndricos. NBR 7222. Rio de Janeiro: ABNT.

ABNT – Associação Brasileira de Normas Técnicas. (2014a). Materiais Pozolâmicos - Requisitos. NBR 12653. Rio de Janeiro: ABNT.

ABNT – Associação Brasileira de Normas Técnicas. (2014b). Materiais Pozolâmicos - Requisitos. NBR 5937. Rio de Janeiro: ABNT.

ABNT – Associação Brasileira de Normas Técnicas. (2015). Concreto para fins estruturais – Classificação pela massa específica, por grupos de resistência e consistência. NBR 8953. Rio de Janeiro: ABNT.

ABNT – Associação Brasileira de Normas Técnicas. (2016). Concreto - Procedimento para moldagem e cura de corpos de prova. NBR 5738. Rio de Janeiro: ABNT.

ABNT – Associação Brasileira de Normas Técnicas. (2017a). Cimento Portland e outros materiais em pó - Determinação da massa específica. NBR 16605. Rio de Janeiro: ABNT.

ABNT – Associação Brasileira de Normas Técnicas. (2017b). Concreto - Determinação dos módulos estáticos de elasticidade e de deformação à compressão. NBR 8522. Rio de Janeiro: ABNT.

Abrão, P. C. R. A., Cardoso, F. A., & John, V. M. (2019). Evalution of Portland pozzolan blended cements containing diatomaceous Earth. Cerâmica, 65, 75-86.

Ahmed, H., Tiznobaik, M., Huda, S. B., Islam, M. S., & Alam, M. S. (2020). Recycled aggregate concrete from large-scale production to sustainable field application. Construction and Building Materials, 262, 119979-113992.

Apha. American Public Health Association. (2012). Standard methods for the examination of water and wastewater, 21th. Washington, DC.

Betsuyaku, R. Y., Delgado Junior, H. G., & Valadão, I. C. R. P. (2017). Produção de tijolo ecológico com resíduo de terra diatomácea. Cadernos UniFOA, 34, 23-33.

Brazil. (2017). Brazilian Institute of Geography and Statistics. Census Data Result. [In Portuguese].

Castanha, A. P. J., Alberton, M. B., Buffon, D. S. O., & Lindino, C. A. (2020). Investigação de Wetlands construídos empregando resíduo de filtro de cervejaria na retenção do hormônio 17α-metiltestosterona. Gaia Scientia, 14(1), 43-62.

Cidreira-Neto, I. R. G., & Rodrigues, G. G. (2017). Relação homem-natureza e os limites para o desenvolvimento sustentável. Movimentos Sociais & Dinâmicas Espaciais, 6(2), 142-156.

Crangle Junior, R. D. (2021). Diatomite. Washington, U.S. Geological Survey, Mineral Yearbook.

Ferdous, W., Manalo, A., Siddique, R., Mendis, P., Zhuge, Y., Wong, H. S., Lokuge, W., Aravinthan, T., & Schubel, P. (2021). Recycling of landfill wastes (tyres, plastics and glass) in construction – A review on global waste generation, performance, application and future opportunities. Resources, Conservation and Recycling, 173, 105745.

Gonzalez-Fonteboa, B., Martinez-Abella, F., Lopez, D. C., & Seara-Paz, S. (2011). Stress–strain relationship in axial compression for concrete using recycled saturated coarse aggregate. Construction and Building Materials, 25(5), 2335-2342.

Goulart, M. R., Silveira, C. B., Campos, M. L., Almeida, J. K. A., Manfredi-Coimbra, S., & Oliveira, A. F. (2011). Metodologias para reutilização do resíduo de terra diatomácea, proveniente da filtração e clarificação da cerveja. Quimica. Nova, 34(4), 625-629.

GUACELLI, P. A. G. (2010). Substituição da areia natural por areia de britagem de rochas basálticas para argamassa de revestimento. [Dissertação Mestrado em Engenharia de Edificações e Saneamento, Universidade Estadual de Londrina]. Repositório Institucional da UEL. https:// https://repositorio.uel.br/items/44cac6fc-7859-40c6-8b96-49c1e45bce2f

Gursel, A. P., Maryman, H., & Ostertag, C. A. (2016). Life-cycle approach to environmental, mechanical, and durability properties of "green" concrete mixes with rice husk ash. Journal of Cleaner Production, 112(1), 823-836.

Hasan, M., Saidi, T., & Afifuddin, M. (2021). Mechanical properties and absorption of lightweight concrete using lightweight aggregate from diatomaceous earth. Construction and Building Materials, 277, 122324.

Helene, P. R. L., & Terzian, P. (1992). Manual de Dosagem e Controle do Concreto. São Paulo, Brazil: Ed. PINI.

Kirthika, S. K., Singh, S. K., & Chourasia, A. (2020). Alternative fine aggregates in production of sustainable concrete - A review. Journal of Cleaner Production, 268, 122089-1222116.

Letelier, V., Tarela, E., Munoz, P., & Moriconi, G. (2016). Assessment of the mechanical properties of a concrete made by reusing both: brewery spent diatomite and recycled aggregates. Construction and Building Materials, 114, 492-498.

Li, J., Zhang, W., Li, C., & Monteiro, P. J. M. (2019). Green concrete containing diatomaceous earth and limestone: workability, mechanical properties, and life-cycle assessment. Journal of Cleaner Production, 223, 662-679.

Lima, L., Trindade, E., Alencar, L., Alencar, M., & Silva, L. (2021). Sustainability in the construction industry: A systematic review of the literature. Journal of Cleaner Production, 289, 125730.

Mehta, P. K., & Monteiro, P. J. M. (2006). Concrete: microstructure, Properties and Materials. New York; McGraw-Hill.

Miller, S. A., Sakulich, A. R., Barsoum, M. W., & Sierra, E. J. (2010). Diatomaceous Earth as a Pozzolan in the Fabrication of an Alkali-Activated Fine-Aggregate Limestone Concrete. Journal of the American Ceramic Society, 93(9), 2828-2836.

Miller, G. T., & Spoolman, S. (2015). Environmental Science. Devon, UK: Brooks Cole Publishing Company.

Nascimento, C. F. G. (2020). Viabilidade da substituição parcial do resíduo de construção civil pelo agregado miúdo nas propriedades físicas e mecânicas do concreto. Brazilian Journal of Development, 6(8), 62073-62081.

Olajire, A. A. (2020). The brewing industry and environmental challenges. Journal of Cleaner Production, 256, 102817.

Our World Data. (2022). Annual CO2 emissions from cement 2021. Retrieved from: https://ourworldindata.org/. Access in January 2022.

Reka, A. A., Pavlovski, B., & Makreski, P. (2017). New optimized method for low temperature hydrothermal production of porous ceramics using diatomaceous earth. Ceram. Int., 43(15), 12572–12578.

Sankh, A. C., Biradar, P. M., Naghathan, S. J., & Ishvargol, M. B. (2014). Recent trends in replacement of Natural sand with different alternatives. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 59-66.

Santonja, G. G. (2019). Best Available Techniques (BAT) Reference Document for the Food, Drink and Milk Industries. Sevilhe, Spain: EUR 29978 EN.

Santos, J. C., Tashima, M. M., Moura, M. R., & Aouada, F.A. (2016). Obtainment of hybrid composites based on hydrogel and Portland cement. Química Nova, 39(2), 124-129.

Sierra, E. J., Miller, S. A., Sakulich, A. R., Mackenzie, K., & Barsoum, M. W. (2010). Pozzolanic Activity of Diatomaceous Earth. Journal of the American Ceramic Society, 93(10), 3406-3410.

Sun, C., Chen, Q., Xiao, J., Liu, W. (2020). Utilization of waste concrete recycling materials in self-compacting concrete. Resources, Conservation and Recycling, 161, 104930.

Tagnit-Hamou, A., Petrov, N., & Luke, K. (2003). Properties of Concrete Containing Diatomaceous Earth. Aci Materials Journal, 100(1), 73-78.

Tahar, Z., Ngo, T-T., Kacri, E. H., Bouvet, A., Debieb, F., & Aggoun, S. (2017). Effect of cement and admixture on the utilization of recycled aggregates in concrete. Construction and Building Materials, 149, 91-102.

Valverde, F. M. (2022). O novo normal na indústria de agregados. Retrieved from: https://sitefiespstorage.blob.core.windows.net/observatoriodaconstrucao/2020/09/file-20200910200501-o-novo-normal-na-industria-de-agregados.pdf.

Villagrán-Zaccardi, Y. A., March, A. T. M., Sosa, M. E., Zega, C. J., De Belie, N., & Bernal, S. A. (2022). Complete re-utilization of waste concretes. Valorization pathways and research needs. Resources, Conservation & Recycling, 177, 105955.

Wang, T., Nicolas, R. S., Kashani, A., & Ngo, T. (2022). Sustainable utilization of low-grade and contaminated waste glass fines as a partial sand replacement in structural concrete. Case Studies in Construction Materials, 16, e00794.

Yang, L., Liu, G., Gao, D., & Zhang, C. (2021). Experimental study on water absorption of unsaturated concrete: w/c ratio, coarse aggregate and saturation degree. Construction and Building Materials, 272, 121945.

Zhutovsky, S., & Hooton, R. D. (2019). Role of sample conditioning in water absorption tests. Construction and Building Materials, 215, 918–924.

Downloads

Published

2024-12-06

How to Cite

Sebben, A. A., Savaris, G., & Lindino, C. A. (2024). Concrete production with brewing industry waste. Ciência E Natura, 46, e75292. https://doi.org/10.5902/2179460X75292

Most read articles by the same author(s)