Produção aquapônica tropical de erva cidreira, Melissa officinalis, utilizando diferentes densidades de estocagem de Astyanax bimaculatus

Autores

DOI:

https://doi.org/10.5902/2179460X74160

Palavras-chave:

Recirculação de água, Reciclagem de nutrientes, Plantas medicinais

Resumo

A relação entre organismos constituintes da aquaponia, peixes, plantas e microrganismos precisam estar em harmonia biológica para favorecer o máximo desempenho das espécies. A erva-cidreira (Melissa officinalis), planta alimentícia e medicinal, e Astyanax bimaculatus são espécies que podem agregar valor aos produtos finais aquapônicos. O presente experimento testou cinco tratamentos diferindo por densidades de estocagem de alevinos de A. bimaculatus (0,0, 0,1, 0,2, 0,3 e 0,4 peixe L-1; T1, T2, T3, T4 e T5, respectivamente) em associação com erva-cidreira, na densidade de 24 plantas m-2, em sistemas aquapônicos de substrato instalados em casa de vegetação. O delineamento experimental foi inteiramente casualizado com três repetições para cada tratamento, totalizando 15 sistemas aquapônicos analisados. Os resultados demonstraram que, para o crescimento dos peixes, o T2 foi o que apresentou os melhores resultados de desempenho, seguido do T3 e T4, e por último o T5, enquanto para as plantas foi o T3, seguido do T4 e T5, que não apresentaram diferenças entre si, seguido por T2 e T1, por último. Em todos os tratamentos, observou-se crescimento animal e vegetal. Os sistemas aquapônicos estudados demonstraram sua viabilidade para a produção da espécie apresentando resultados satisfatórios, o que pode ser interessante para futuros estudos e produtores.

Downloads

Não há dados estatísticos.

Biografia do Autor

Bernardo Ramos Simões Corrêa, Universidade de Brasília

Doutor em Ciências Ambientais e Mestre em Meio Ambiente e Desenvolvimento Rural pela Universidade de Brasília (UnB).

Rodrigo Diana Navarro, Universidade de Brasília

Pós-doutor em Fisiologia da reprodução de peixe de água doce da na Universidade Federal de Lavras (2010). 

Referências

Alves, A. S. (2017). Produção e qualidade de Melissa offinalis L. em diferentes condições de cultivo (Dissertação Mestrado em Produção Vegetal). Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil.

Assis, R. M. A., Carneiro, J. J., Medeiros, A. P. R., Carvalho, A. A., Cunha Honorato, A., Carneiro, M. A. C., Bertolucci, S. K. V., & Pinto, J. E. B. P. (2020). Arbuscular mycorrhizal fungi and organic manure enhance growth and accumulation of citral, total phenols, and flavonoids in Melissa officinalis L. Ind. Crop. Prod., 158, 112981. doi: 10.1016/j.indcrop.2020.112981 DOI: https://doi.org/10.1016/j.indcrop.2020.112981

Bakaluba, B. D. (2023). Nutrient Cycling and Water Quality Management in Aquaponics. Hochschule Rhein-Waal. doi: 10.13140/RG.2.2.17166.13128

Bareetseng, S. (2022). The Worldwide Herbal Market: Trends and Opportunities. J. Biomed. Res. Environ. Sci. 3(5), 575-584. doi: 10.37871/jbres1482 DOI: https://doi.org/10.37871/jbres1482

Camargo, J. A., & Alonso, A. (2006). Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environ. Int., 32, 831–849. doi: 10.1016/j.envint.2006.05.002 DOI: https://doi.org/10.1016/j.envint.2006.05.002

Carnat, A., Fraisse, D., & Lamaison, J. L. (1998). The aromatic and polyphenolic composition of lemon balm (Melissa officinalis L. subsp. officinalis) tea. Pharmaceutics Acta Helvetiae, 72, 301-305. doi: 10.1016/S0031-6865(97)00026-5 DOI: https://doi.org/10.1016/S0031-6865(97)00026-5

Castilho-Barros, L., Galan, G. D., Prieto, R. F., Azedo, M. R., Barbieri, E., & Henriques, M. B. (2023). Financial feasibility of a small-scale urban aquaponic system in Brazil: production of lambari rosa (Astyanax lacustris) with lettuce (Lactuca sativa). Research Square Platform LLC. doi: 10.21203/rs.3.rs-2720389/v1 DOI: https://doi.org/10.21203/rs.3.rs-2720389/v1

Channa, A. A., Munir, K., Hansen, M., & Tariq, M. F. (2024). Optimisation of Small-Scale Aquaponics Systems Using Artificial Intelligence and the IoT: Current Status, Challenges, and Opportunities. Encyclopedia, 4, 313–336. doi: 10.3390/encyclopedia4010023 DOI: https://doi.org/10.3390/encyclopedia4010023

Davidson, J., Good, C., Welsh, C., & Summerfelt, S. (2014). Comparing the effects of high vs. low nitrate on the health, performance, and welfare of juvenile rainbow trout Oncorhynchus mykiss within water recirculating aquaculture systems. Aquac. Eng., 59, 30–40. doi: 10.1016/j.aquaeng.2014.01.003 DOI: https://doi.org/10.1016/j.aquaeng.2014.01.003

Delaide, B., Goddek, S., Gott, J., Soyeurt, H., & Jijakli, M. (2016). Lettuce (Lactuca sativa L. var. Sucrine) growth performance in complemented aquaponic solution outperforms hydroponics. Water, 8, 467. doi: 10.3390/w8100467 DOI: https://doi.org/10.3390/w8100467

Eck, M. (2017). Taxonomic characterization of bacteria communities from water of diversified aquaponic systems (Thesis for the partial fulfillment of a Masters Degree). Université de Liège, Liège, Bélgica.

Espinal, C. A., & Matulié, D. (2019). Recirculating Aquaculture Technologies. In Goddek, S., Joyce, A., Kotzen, B., & Burnell, G. M. (org). Aquaponics Food Production Systems. Combined Aquaculture and Hydroponic Production Technologies for the Future (pp. 35- 76). SpringerOpen. doi: 10.1007/978-3-030-15943-6 DOI: https://doi.org/10.1007/978-3-030-15943-6_3

Food and Agriculture Organization of the United Nations (FAO). (2017). The future of food and agriculture: Trends and challenges. FAO.

Food and Agriculture Organization of the United Nations (FAO). FAO’s hole in water. FAO. Recovered from: https://www.fao.org/water/en/

Fernandes, I. M., Bastos, Y. F., Barreto, D. S., Lourenço, L. S., & Penha, J. M. (2017). The efficacy of clove oil as an anaesthetic and in euthanasia procedure for small-sized tropical fishes. Braz. J. Biol., 77(3), 444-450. doi: 10.1590/1519-6984.15015 DOI: https://doi.org/10.1590/1519-6984.15015

Galvani, F., & Gaertner, E. (2006). Adequação da Metodologia Kjeldahl para determinação de Nitrogênio Total e Proteína Bruta. (63rd ed). Corumbá: Circular Técnica, Embrapa Pantanal.

Goddek, S., Delaide, B., Mankasingh, U., Ragnarsdottir, K., Jijakli, H., & Thorarinsdottir, R. (2015). Challenges of sustainable and commercial aquaponics. Sustainability, 7, 4199–4224. doi: 10.3390/su7044199 DOI: https://doi.org/10.3390/su7044199

Gonçalves, F. H. A. S. B. (2017). Sustentabilidade dos sistemas de produção do lambari-do- rabo-amarelo. (PhD thesis). Centro de Aquicultura, Universidade Estadual Paulista. Jaboticabal, SP, Brasil.

Hartmann, H. T., Kester, D. E., Davies Jr, F. T., Geneve, R. L., & Wilson, S. E. (2018). Plant propagation: principles and practices. (9th ed). New Jersey: Prentice Hall.

Henriques, M. B., Castilho-Barros, L., Souza, M. R., Barbieri, E., Silva, N. J. R., Nunes, F. A. A., & Sanches, E. G. (2022). Is the small-scale aquaculture of lambari Deuterodon iguape (Eigenmann 1907) for live bait in recirculating systems economically profitable? Aquaculture, 546, 737335. doi: 10.1016/j.aquaculture.2021.737335 DOI: https://doi.org/10.1016/j.aquaculture.2021.737335

Hundley, G. C., Ribeiro Filho, O. P., Navarro, F. K. S. P., & Navarro, R. D. (2018). Integration of Nile tilapia (Oreochromis niloticus L.) production Origanum majorana L. and Ocimum basilicum L. using aquaponics technology. Acta Scient Tech, 40, 35460. doi: 10.4025/actascitechnol.v40i1.35460 DOI: https://doi.org/10.4025/actascitechnol.v40i1.35460

IBGE. (2021). Aquaculture statistics: Growth and market analysis in Brazil. Brazilian Institute of Geography and Statistics.

Ibrahim, L. A., Shaghaleh, H., El-Kassar, G. M., Abu-Hashim, M., Elsadek, E. A., & Hamoud, Y. A. (2023). Aquaponics: A Sustainable Path to Food Sovereignty and Enhanced Water Use Efficiency. Water, 15(24), 4310. doi: 10.3390/w15244310 DOI: https://doi.org/10.3390/w15244310

Joyce, A., Goddek, S., Kotzen, B., & Wuertz, S. (2019). Aquaponics: Closing the cycle on limited water, land and nutrient resources. In Goddek, S., Joyce, A., Kotzen, B., & Burnell, G. M. (org). Aquaponics Food Production Systems. Combined Aquaculture and Hydroponic Production Technologies for the Future (pp. 19-34). SpringerOpen. doi: 10.1007/978-3-030-15943-6 DOI: https://doi.org/10.1007/978-3-030-15943-6_2

Juaréz-Rosete, C. R., Aguilar-Castillo, J. A., Aburto-Gonzáles, C. A., & Alejo-Santiago, G. (2018). Biomass production, nutritional requirement of nitrogen, phosphorus and potassium, and concentration of the nutrient solution in oregano. Revista Chapingo Serie Horticultura, 25(1), 17-28. doi: 10.5154/r.rchsh.2018.02.006 DOI: https://doi.org/10.5154/r.rchsh.2018.02.006

Kennedy, D. O., Scholey, A. B., Tildesley, N. T., Perry, E. K., & Wesnes, K. A. (2002). Modulation of mood and cognitive performance following acute administration of Melissa officinalis (lemon balm). Pharmacol Biochem Behav. 72(4), 953-64. doi: 10.1016/s0091-3057(02)00777-3. DOI: https://doi.org/10.1016/S0091-3057(02)00777-3

Khalid, A. K., Hu, W., & Cai, W. (2008). The Effects of Harvesting and Different Drying Methods on the Essential Oil Composition of Lemon Balm (Melissa officinalis L.). Journal of Essential Oil Bearing Plants, 11(4), 342-349. doi: 10.1080/0972060X.2008.10643639 DOI: https://doi.org/10.1080/0972060X.2008.10643639

Kitaya, Y., Kawamoto, T., Endo, R., & Shibuya, T. (2023). Effect of fish density on biological production in aquaponics combining lettuce hydroponics and loach aquaculture for controlled ecological life support systems in space. Frontiers in Astronomy and Space Sciences, 10. doi: 10.3389/fspas.2023.1197402 DOI: https://doi.org/10.3389/fspas.2023.1197402

Kjeldahl, J. (1883). A new method for the determination of nitrogen in organic matter. Analy Bioanaly Chem, 22, 366-382. doi: 10.1007/BF01338151 DOI: https://doi.org/10.1007/BF01338151

Kodama, G. (2016). Viabilidade Financeira em Sistema de Aquaponia (Dissertação de Mestrado). Universidade de Brasília, Brasília, DF, Brasil.

Lennard, W. (2017). Commercial aquaponic systems: integrating recirculating fish culture with hydroponic plant production. Wilson Lennard.

Lobillo-Eguíbar, J., Fernández-Cabanás, V. M., Bermejo, L. A., & Pérz-Urrestarazu, L. (2020). Economic Sustainability of Small-Scale Aquaponic Systems for Food Self-Production. Agronomy, 10(10), 1468. doi: 10.3390/agronomy10101468 DOI: https://doi.org/10.3390/agronomy10101468

Lopes, M. C., Silva, N. J. R., Casarini, L. M., Gonçalves, F. H. A. S. B., & Henriques, M. B. (2013). Desova Induzida do Lambari Deuterodon iguape com Extrato Hipofisário de Carpa. Tropic. J Fish. Aquat. Scie., 13(1), 9-13. doi: 10.17080/1676-5664/btcc.v13n1p9-13 DOI: https://doi.org/10.17080/1676-5664/btcc.v13n1p9-13

Manukyan, A., Heuberger, H., & Schnitzler, W. (2004). Yield and quality of some herbs of the Lamiaceae family under soilless greenhouse production. J. Appl. Bot. Food Qual., 78, 193– 199.

Manukyan, A., & Schnitzler, W. (2006). Influence of air temperature on productivity and quality of some medicinal plants under controlled environment conditions. Eur. J. Hortic. Sci., 71, 26–35. Recovered from: https://www.semanticscholar.org/paper/Influence-of-Air-Temperature-on-Productivity-and-of-Manukyan-Schnitzler/e4321d4f7b687ccab420ea3a5214b369e903055c

Masiero, M. A., Viana, C. M. S. S., Lupepsa, C. T., Silva, F. R., Almeida, G. M. C., Tombolato, J. P., Carolino, K., Silva, R. Q., & Lima, D. M. (2021). Propagação vegetativa de Melissa officinalis L. por estaquia. Biodiversidade, 20(1), 122-128. Recovered from: https://periodicoscientificos.ufmt.br/ojs/index.php/biodiversidade/article/view/11962

Maucieri, C., Nicoletto, C., Os, E. van, Anseeuw, D., Havermaet, R. van, & Junge, R. (2019). Hydroponic Technologies. In Goddek, S., Joyce, A., Kotzen, B., & Burnell, G. M. (org). Aquaponics Food Production Systems. Combined Aquaculture and Hydroponic Production Technologies for the Future. (pp. 77-110). SpringerOpen. doi: 10.1007/978-3-030-15943-6 DOI: https://doi.org/10.1007/978-3-030-15943-6_4

Moradkhani, H., Sargsyan, E., Bibak, H., Naseri, B., Sadat-Hosseini, M., Fayazi-Barjin, A., & Meftahizade, H. (2010). Melissa officinalis L., a valuable medicine plant: A review. Journal of Medicinal Plants Research, 4(25), 2753-2759. Recovered from: http://www.academicjournals.org/JMPR

Navarro, R. D., Corrêa, B. R. S., Hundley, G. C., & Kodama, G. (2021). Growth of fingerlings in different stocking densities in tropical aquaponic system of basil production. Ciência e Natura, 43, e95. doi: 10.5902/2179460X63222

Obirikorang, K. A., Sekey, W., Gyampoh, B. A., Ashiabor, G., & Asante, W. (2021) Aquaponics for Improved Food Security in Africa: A Review. Front. Sustain. Food Syst., 5, 705549. doi: 10.3389/fsufs.2021.705549 DOI: https://doi.org/10.3389/fsufs.2021.705549

Palm, H. W., Knaus, U., Appelbaum, S., & Strauch, S. M. (2019). Coupled Aquaponics Systems. In Goddek, S., Joyce, A., Kotzen, B., & Burnell, G. M. (org). Aquaponics Food Production Systems. Combined Aquaculture and Hydroponic Production Technologies for the Future. (pp. 162-199). SpringerOpen. doi: 10.1007/978-3-030-15943-6 DOI: https://doi.org/10.1007/978-3-030-15943-6_7

Parvin, S., Reza, A., S. das, Miah, M. M. U., & Karim, S. (2023). Potential Role and International Trade ofMedicinal and Aromatic Plants in the World. European Journal of Agriculture and Food Sciences, 5(5), 89–99. doi: 10.24018/ejfood.2023.5.5.701 DOI: https://doi.org/10.24018/ejfood.2023.5.5.701

Patil, P. A., Dube, K., Verma, A. K., Chadha, N. K., Sundaray, J. K., & Jayasankar, P. (2019). Growth perfoemance of goldfish, Carassius auratus and basil, Ocimum basilicum in media bed aquaponics. Indian J. Fish, 66(1), 112-118. doi: 10.21077/ijf2019.66.1.78353-15 DOI: https://doi.org/10.21077/ijf.2019.66.1.78353-15

Patora, J., & Klimek, B. (2002). Flavonoids from lemon balm (Melissa officinalis L., Lamiaceae). Acta Pol. Pharm., 59(2), 139-43. Recovered from: https://pubmed.ncbi.nlm.nih.gov/12365606/

Peh, J. H., & Azra, M. N. (2025). A global review of ornamental fish and shellfish research. Aquaculture, 596(1), 741719. doi: 10.1016/j.aquaculture.2024.741719 DOI: https://doi.org/10.1016/j.aquaculture.2024.741719

Pinho, S. M., David, L. H., Garcia, F., Keesman, K. J., Portella, M. C., & Goddek, S. (2021). South American fish species suitable for aquaponics: a review. Intern Aquacult, 29, 1427-1449. doi: 10.1007/s10499-021-00674-w DOI: https://doi.org/10.1007/s10499-021-00674-w

Prabhu, P. A. J., Schrama, J. W., & Kaushik, S. J. (2016). Mineral requirements of fish: a systematic review. Rev. Aquacult, 8, 172–219. doi: 10.1111/raq.12090 DOI: https://doi.org/10.1111/raq.12090

Rakocy, J. E., Masser, M. P., & Losordo, T. M. (2006). Recirculating aquaculture tank production systems: aquaponics – integrating fish and plant culture (454th ed). USA: SRAC Publication, Southern Regional Aquaculture Center.

Resh, H. M. (2013). Hydroponic food production: a definitive guidebook for the advanced home gardener and the commercial hydroponic grower (7th ed). Boca Raton: CRC Press.

Sabry, R. M., Salama, A., & Wahba, H. E. (2023). Growth and quality of lemon balm (Melissa officinalis) as influenced by various plant extracts. Journal of Applied Horticulture, 24(03), 375-380. doi: 10.37855/jah.2022.v24i03.68 DOI: https://doi.org/10.37855/jah.2022.v24i03.68

Schroeder, J. P., Croot, P. L., Dewitz, B. von, Waller, U., & Hanel, R. (2011). Potential and limitations of ozone for the removal of ammonia, nitrite, and yellow substances in marine recirculating aquaculture systems. Aquac. Eng., 45, 35–41. doi: 10.1016/j.aquaeng.2011.06.001 DOI: https://doi.org/10.1016/j.aquaeng.2011.06.001

Silva, N. J. R., Lopes, M. C., Fernandes, J. B. K., & Henriques, M. B. (2011). Caracterização dos sistemas de criação e da cadeia produtiva do Lambari no Estado de São Paulo. Info. Econ., 41, 17-28. Recovered from: file:///D:/sei%20l%C3%A1/lambari_cadeia_produtiva2011.pdf

Somerville, C., Cohen, M., Pantanella, E., Stankus, A., & Lovatelli, A. (2014). Small-scale aquaponic food production: integrated fish and plant farming. (n. 589). FAO Fisheries and Aquaculture, Technical Paper.

Son, Y. J., Park, J. E., Kim, J., Yoo, G., & Nho, C. W. (2021). The changes in growth parameters, qualities, and chemical constituents of lemon balm (Melissa officinalis L.) cultivated in three different hydroponic systems. Ind. Crops Prod., 163, 113313. doi: 10.1016/j.indcrop.2021.113313 DOI: https://doi.org/10.1016/j.indcrop.2021.113313

Sorensen, J. M. (2000). Melissa Officinalis. International Journal of Aromatherapy, 10(1-2), 7-15. doi: 10.1016/S0962-4562(00)80004-1 DOI: https://doi.org/10.1016/S0962-4562(00)80004-1

Suhl, J., Dannehl, D., Kloas, W., Baganz, D., Jobs, S., Scheibe, G., & Schmidt, U. (2016). Advanced aquaponics: Evaluation of intensive tomato production in aquaponics vs. conventional hydroponics. Agricultural Water Management, 178, 335–344. doi: 10.1016/j.agwat.2016.10.013. DOI: https://doi.org/10.1016/j.agwat.2016.10.013

Szab’o, K., Malekzadeh, M., Rad’acsi, P., Lad’anyi, M., Rajh’art, P., Inotai, K., Tavaszi- S’arosi, S., & N´Emeth, E. (2016). Could the variety influence the quantitative and qualitative outcome of lemon balm production? Ind. Crops Prod., 83, 710–716. doi: 10.1016/j.indcrop.2015.12.027 DOI: https://doi.org/10.1016/j.indcrop.2015.12.027

United Nations Educational, Scientific and Cultural Organization (UNESCO). (2021). World Water Development Report: Valuing Water. UNESCO.

Rijin, J. van. (2013). Waste treatment in recirculating aquaculture systems. Aquac. Eng., 53, 49– 56. doi: 10.1016/j.aquaeng.2012.11.010 DOI: https://doi.org/10.1016/j.aquaeng.2012.11.010

Venskutonis, R., Gruzdienè, Tirzite, D., & Tirzitis, G. (2005). Assessment of antioxidant activity of plant extracts by different methods. Acta Horticulture, 677(677), 99-107. doi: 10.17660/ActaHortic.2005.677.13 DOI: https://doi.org/10.17660/ActaHortic.2005.677.13

Viegas, R. M., França, C. L., Castro, J. S., Castro, J. J. P., Santana, T. C., Costa-Lima, M. P. G., Carvalho Neta, R. N. F., Carneiro, C. R. P., & Teixeira, E. G. (2020). Eugenol as an efficient anesthetic for neotropical fish Prochilodus nigricans (Teleostei, Prochilodontidae). Arq. Bras. Med. Vet. Zootec., 72(5), 1813-1820. doi: 10.1590/1678-4162-11866 DOI: https://doi.org/10.1590/1678-4162-11866

Yep, B., & Zheng, Y. (2019). Aquaponic trends and challenges: A review. J. Clean. Prod., 228, 1586–1599. doi: 10.1016/j.jclepro.2019.04.290 DOI: https://doi.org/10.1016/j.jclepro.2019.04.290

Yildiz, H. Y., Robaina, L., Pirhonen, J., Mente, E., Domínguez, D., & Parisi, G. (2017). Fish welfare in aquaponics system: its relation to water quality with an emphasis on feed and faeces-a review. Water, 9, 13. doi: 10.3390/w9010013 DOI: https://doi.org/10.3390/w9010013

Wongkiew, S., Hu, Z., Chandran, K., Lee, J. W., & Khanal, S. K. (2017). Nitrogen transformations in aquaponic systems: A review. Aqua. Eng., 76, 1-43. doi:10.1016/j.aquaeng.2017.01.004 DOI: https://doi.org/10.1016/j.aquaeng.2017.01.004

Publicado

2025-04-01

Como Citar

Corrêa, B. R. S., & Navarro, R. D. (2025). Produção aquapônica tropical de erva cidreira, Melissa officinalis, utilizando diferentes densidades de estocagem de Astyanax bimaculatus. Ciência E Natura, 47, e74160. https://doi.org/10.5902/2179460X74160

Edição

Seção

Meio Ambiente