Tropical aquaponic production of lemon balm, Melissa officinalis, using different Astyanax bimaculatus fingerling stocking densities
DOI:
https://doi.org/10.5902/2179460X74160Keywords:
Water recirculation, Nutrient recycling, Medicinal plantsAbstract
The relationship between the constituent organisms of aquaponics - fish, plants, and microorganisms - needs to be in biological harmony to favor the maximum performance of the species. Lemon balm (Melissa officinalis), a food and medicinal plant, as well as Astyanax bimaculatus, are species that can add value to the final products of aquaponics. The present experiment tested five treatments with different stocking densities of A. bimaculatus fingerlings (0.0, 0.1, 0.2, 0.3, and 0.4 fish L-1; T1, T2, T3, T4, and T5, respectively) in association with lemon balm at a density of 24 plants m-2 in media bed aquaponic systems installed in a greenhouse. The experimental design was completely randomized with three replications for each treatment, totaling 15 aquaponic systems analyzed. The results showed that for fish growth, T2 presented the best performance results, followed by T3 and T4, and finally T5; while for plants it was T3, followed by T4 and T5 which did not show differences between them, followed by T2, and finally T1. In all treatments, animal and plant growth were observed. The studied aquaponic systems demonstrated their viability for the production of the species, presenting satisfactory results, which can be interesting for further studies and producers.
Downloads
References
Alves, A. S. (2017). Produção e qualidade de Melissa offinalis L. em diferentes condições de cultivo (Dissertação Mestrado em Produção Vegetal). Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil.
Assis, R. M. A., Carneiro, J. J., Medeiros, A. P. R., Carvalho, A. A., Cunha Honorato, A., Carneiro, M. A. C., Bertolucci, S. K. V., & Pinto, J. E. B. P. (2020). Arbuscular mycorrhizal fungi and organic manure enhance growth and accumulation of citral, total phenols, and flavonoids in Melissa officinalis L. Ind. Crop. Prod., 158, 112981. doi: 10.1016/j.indcrop.2020.112981
Bakaluba, B. D. (2023). Nutrient Cycling and Water Quality Management in Aquaponics. Hochschule Rhein-Waal. doi: 10.13140/RG.2.2.17166.13128
Bareetseng, S. (2022). The Worldwide Herbal Market: Trends and Opportunities. J. Biomed. Res. Environ. Sci. 3(5), 575-584. doi: 10.37871/jbres1482
Camargo, J. A., & Alonso, A. (2006). Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environ. Int., 32, 831–849. doi: 10.1016/j.envint.2006.05.002
Carnat, A., Fraisse, D., & Lamaison, J. L. (1998). The aromatic and polyphenolic composition of lemon balm (Melissa officinalis L. subsp. officinalis) tea. Pharmaceutics Acta Helvetiae, 72, 301-305. doi: 10.1016/S0031-6865(97)00026-5
Castilho-Barros, L., Galan, G. D., Prieto, R. F., Azedo, M. R., Barbieri, E., & Henriques, M. B. (2023). Financial feasibility of a small-scale urban aquaponic system in Brazil: production of lambari rosa (Astyanax lacustris) with lettuce (Lactuca sativa). Research Square Platform LLC. doi: 10.21203/rs.3.rs-2720389/v1
Channa, A. A., Munir, K., Hansen, M., & Tariq, M. F. (2024). Optimisation of Small-Scale Aquaponics Systems Using Artificial Intelligence and the IoT: Current Status, Challenges, and Opportunities. Encyclopedia, 4, 313–336. doi: 10.3390/encyclopedia4010023
Davidson, J., Good, C., Welsh, C., & Summerfelt, S. (2014). Comparing the effects of high vs. low nitrate on the health, performance, and welfare of juvenile rainbow trout Oncorhynchus mykiss within water recirculating aquaculture systems. Aquac. Eng., 59, 30–40. doi: 10.1016/j.aquaeng.2014.01.003
Delaide, B., Goddek, S., Gott, J., Soyeurt, H., & Jijakli, M. (2016). Lettuce (Lactuca sativa L. var. Sucrine) growth performance in complemented aquaponic solution outperforms hydroponics. Water, 8, 467. doi: 10.3390/w8100467
Eck, M. (2017). Taxonomic characterization of bacteria communities from water of diversified aquaponic systems (Thesis for the partial fulfillment of a Masters Degree). Université de Liège, Liège, Bélgica.
Espinal, C. A., & Matulié, D. (2019). Recirculating Aquaculture Technologies. In Goddek, S., Joyce, A., Kotzen, B., & Burnell, G. M. (org). Aquaponics Food Production Systems. Combined Aquaculture and Hydroponic Production Technologies for the Future (pp. 35- 76). SpringerOpen. doi: 10.1007/978-3-030-15943-6
Food and Agriculture Organization of the United Nations (FAO). (2017). The future of food and agriculture: Trends and challenges. FAO.
Food and Agriculture Organization of the United Nations (FAO). FAO’s hole in water. FAO. Recovered from: https://www.fao.org/water/en/
Fernandes, I. M., Bastos, Y. F., Barreto, D. S., Lourenço, L. S., & Penha, J. M. (2017). The efficacy of clove oil as an anaesthetic and in euthanasia procedure for small-sized tropical fishes. Braz. J. Biol., 77(3), 444-450. doi: 10.1590/1519-6984.15015
Galvani, F., & Gaertner, E. (2006). Adequação da Metodologia Kjeldahl para determinação de Nitrogênio Total e Proteína Bruta. (63rd ed). Corumbá: Circular Técnica, Embrapa Pantanal.
Goddek, S., Delaide, B., Mankasingh, U., Ragnarsdottir, K., Jijakli, H., & Thorarinsdottir, R. (2015). Challenges of sustainable and commercial aquaponics. Sustainability, 7, 4199–4224. doi: 10.3390/su7044199
Gonçalves, F. H. A. S. B. (2017). Sustentabilidade dos sistemas de produção do lambari-do- rabo-amarelo. (PhD thesis). Centro de Aquicultura, Universidade Estadual Paulista. Jaboticabal, SP, Brasil.
Hartmann, H. T., Kester, D. E., Davies Jr, F. T., Geneve, R. L., & Wilson, S. E. (2018). Plant propagation: principles and practices. (9th ed). New Jersey: Prentice Hall.
Henriques, M. B., Castilho-Barros, L., Souza, M. R., Barbieri, E., Silva, N. J. R., Nunes, F. A. A., & Sanches, E. G. (2022). Is the small-scale aquaculture of lambari Deuterodon iguape (Eigenmann 1907) for live bait in recirculating systems economically profitable? Aquaculture, 546, 737335. doi: 10.1016/j.aquaculture.2021.737335
Hundley, G. C., Ribeiro Filho, O. P., Navarro, F. K. S. P., & Navarro, R. D. (2018). Integration of Nile tilapia (Oreochromis niloticus L.) production Origanum majorana L. and Ocimum basilicum L. using aquaponics technology. Acta Scient Tech, 40, 35460. doi: 10.4025/actascitechnol.v40i1.35460
IBGE. (2021). Aquaculture statistics: Growth and market analysis in Brazil. Brazilian Institute of Geography and Statistics.
Ibrahim, L. A., Shaghaleh, H., El-Kassar, G. M., Abu-Hashim, M., Elsadek, E. A., & Hamoud, Y. A. (2023). Aquaponics: A Sustainable Path to Food Sovereignty and Enhanced Water Use Efficiency. Water, 15(24), 4310. doi: 10.3390/w15244310
Joyce, A., Goddek, S., Kotzen, B., & Wuertz, S. (2019). Aquaponics: Closing the cycle on limited water, land and nutrient resources. In Goddek, S., Joyce, A., Kotzen, B., & Burnell, G. M. (org). Aquaponics Food Production Systems. Combined Aquaculture and Hydroponic Production Technologies for the Future (pp. 19-34). SpringerOpen. doi: 10.1007/978-3-030-15943-6
Juaréz-Rosete, C. R., Aguilar-Castillo, J. A., Aburto-Gonzáles, C. A., & Alejo-Santiago, G. (2018). Biomass production, nutritional requirement of nitrogen, phosphorus and potassium, and concentration of the nutrient solution in oregano. Revista Chapingo Serie Horticultura, 25(1), 17-28. doi: 10.5154/r.rchsh.2018.02.006
Kennedy, D. O., Scholey, A. B., Tildesley, N. T., Perry, E. K., & Wesnes, K. A. (2002). Modulation of mood and cognitive performance following acute administration of Melissa officinalis (lemon balm). Pharmacol Biochem Behav. 72(4), 953-64. doi: 10.1016/s0091-3057(02)00777-3.
Khalid, A. K., Hu, W., & Cai, W. (2008). The Effects of Harvesting and Different Drying Methods on the Essential Oil Composition of Lemon Balm (Melissa officinalis L.). Journal of Essential Oil Bearing Plants, 11(4), 342-349. doi: 10.1080/0972060X.2008.10643639
Kitaya, Y., Kawamoto, T., Endo, R., & Shibuya, T. (2023). Effect of fish density on biological production in aquaponics combining lettuce hydroponics and loach aquaculture for controlled ecological life support systems in space. Frontiers in Astronomy and Space Sciences, 10. doi: 10.3389/fspas.2023.1197402
Kjeldahl, J. (1883). A new method for the determination of nitrogen in organic matter. Analy Bioanaly Chem, 22, 366-382. doi: 10.1007/BF01338151
Kodama, G. (2016). Viabilidade Financeira em Sistema de Aquaponia (Dissertação de Mestrado). Universidade de Brasília, Brasília, DF, Brasil.
Lennard, W. (2017). Commercial aquaponic systems: integrating recirculating fish culture with hydroponic plant production. Wilson Lennard.
Lobillo-Eguíbar, J., Fernández-Cabanás, V. M., Bermejo, L. A., & Pérz-Urrestarazu, L. (2020). Economic Sustainability of Small-Scale Aquaponic Systems for Food Self-Production. Agronomy, 10(10), 1468. doi: 10.3390/agronomy10101468
Lopes, M. C., Silva, N. J. R., Casarini, L. M., Gonçalves, F. H. A. S. B., & Henriques, M. B. (2013). Desova Induzida do Lambari Deuterodon iguape com Extrato Hipofisário de Carpa. Tropic. J Fish. Aquat. Scie., 13(1), 9-13. doi: 10.17080/1676-5664/btcc.v13n1p9-13
Manukyan, A., Heuberger, H., & Schnitzler, W. (2004). Yield and quality of some herbs of the Lamiaceae family under soilless greenhouse production. J. Appl. Bot. Food Qual., 78, 193– 199.
Manukyan, A., & Schnitzler, W. (2006). Influence of air temperature on productivity and quality of some medicinal plants under controlled environment conditions. Eur. J. Hortic. Sci., 71, 26–35. Recovered from: https://www.semanticscholar.org/paper/Influence-of-Air-Temperature-on-Productivity-and-of-Manukyan-Schnitzler/e4321d4f7b687ccab420ea3a5214b369e903055c
Masiero, M. A., Viana, C. M. S. S., Lupepsa, C. T., Silva, F. R., Almeida, G. M. C., Tombolato, J. P., Carolino, K., Silva, R. Q., & Lima, D. M. (2021). Propagação vegetativa de Melissa officinalis L. por estaquia. Biodiversidade, 20(1), 122-128. Recovered from: https://periodicoscientificos.ufmt.br/ojs/index.php/biodiversidade/article/view/11962
Maucieri, C., Nicoletto, C., Os, E. van, Anseeuw, D., Havermaet, R. van, & Junge, R. (2019). Hydroponic Technologies. In Goddek, S., Joyce, A., Kotzen, B., & Burnell, G. M. (org). Aquaponics Food Production Systems. Combined Aquaculture and Hydroponic Production Technologies for the Future. (pp. 77-110). SpringerOpen. doi: 10.1007/978-3-030-15943-6
Moradkhani, H., Sargsyan, E., Bibak, H., Naseri, B., Sadat-Hosseini, M., Fayazi-Barjin, A., & Meftahizade, H. (2010). Melissa officinalis L., a valuable medicine plant: A review. Journal of Medicinal Plants Research, 4(25), 2753-2759. Recovered from: http://www.academicjournals.org/JMPR
Navarro, R. D., Corrêa, B. R. S., Hundley, G. C., & Kodama, G. (2021). Growth of fingerlings in different stocking densities in tropical aquaponic system of basil production. Ciência e Natura, 43, e95. doi: 10.5902/2179460X63222
Obirikorang, K. A., Sekey, W., Gyampoh, B. A., Ashiabor, G., & Asante, W. (2021) Aquaponics for Improved Food Security in Africa: A Review. Front. Sustain. Food Syst., 5, 705549. doi: 10.3389/fsufs.2021.705549
Palm, H. W., Knaus, U., Appelbaum, S., & Strauch, S. M. (2019). Coupled Aquaponics Systems. In Goddek, S., Joyce, A., Kotzen, B., & Burnell, G. M. (org). Aquaponics Food Production Systems. Combined Aquaculture and Hydroponic Production Technologies for the Future. (pp. 162-199). SpringerOpen. doi: 10.1007/978-3-030-15943-6
Parvin, S., Reza, A., S. das, Miah, M. M. U., & Karim, S. (2023). Potential Role and International Trade ofMedicinal and Aromatic Plants in the World. European Journal of Agriculture and Food Sciences, 5(5), 89–99. doi: 10.24018/ejfood.2023.5.5.701
Patil, P. A., Dube, K., Verma, A. K., Chadha, N. K., Sundaray, J. K., & Jayasankar, P. (2019). Growth perfoemance of goldfish, Carassius auratus and basil, Ocimum basilicum in media bed aquaponics. Indian J. Fish, 66(1), 112-118. doi: 10.21077/ijf2019.66.1.78353-15
Patora, J., & Klimek, B. (2002). Flavonoids from lemon balm (Melissa officinalis L., Lamiaceae). Acta Pol. Pharm., 59(2), 139-43. Recovered from: https://pubmed.ncbi.nlm.nih.gov/12365606/
Peh, J. H., & Azra, M. N. (2025). A global review of ornamental fish and shellfish research. Aquaculture, 596(1), 741719. doi: 10.1016/j.aquaculture.2024.741719
Pinho, S. M., David, L. H., Garcia, F., Keesman, K. J., Portella, M. C., & Goddek, S. (2021). South American fish species suitable for aquaponics: a review. Intern Aquacult, 29, 1427-1449. doi: 10.1007/s10499-021-00674-w
Prabhu, P. A. J., Schrama, J. W., & Kaushik, S. J. (2016). Mineral requirements of fish: a systematic review. Rev. Aquacult, 8, 172–219. doi: 10.1111/raq.12090
Rakocy, J. E., Masser, M. P., & Losordo, T. M. (2006). Recirculating aquaculture tank production systems: aquaponics – integrating fish and plant culture (454th ed). USA: SRAC Publication, Southern Regional Aquaculture Center.
Resh, H. M. (2013). Hydroponic food production: a definitive guidebook for the advanced home gardener and the commercial hydroponic grower (7th ed). Boca Raton: CRC Press.
Sabry, R. M., Salama, A., & Wahba, H. E. (2023). Growth and quality of lemon balm (Melissa officinalis) as influenced by various plant extracts. Journal of Applied Horticulture, 24(03), 375-380. doi: 10.37855/jah.2022.v24i03.68
Schroeder, J. P., Croot, P. L., Dewitz, B. von, Waller, U., & Hanel, R. (2011). Potential and limitations of ozone for the removal of ammonia, nitrite, and yellow substances in marine recirculating aquaculture systems. Aquac. Eng., 45, 35–41. doi: 10.1016/j.aquaeng.2011.06.001
Silva, N. J. R., Lopes, M. C., Fernandes, J. B. K., & Henriques, M. B. (2011). Caracterização dos sistemas de criação e da cadeia produtiva do Lambari no Estado de São Paulo. Info. Econ., 41, 17-28. Recovered from: file:///D:/sei%20l%C3%A1/lambari_cadeia_produtiva2011.pdf
Somerville, C., Cohen, M., Pantanella, E., Stankus, A., & Lovatelli, A. (2014). Small-scale aquaponic food production: integrated fish and plant farming. (n. 589). FAO Fisheries and Aquaculture, Technical Paper.
Son, Y. J., Park, J. E., Kim, J., Yoo, G., & Nho, C. W. (2021). The changes in growth parameters, qualities, and chemical constituents of lemon balm (Melissa officinalis L.) cultivated in three different hydroponic systems. Ind. Crops Prod., 163, 113313. doi: 10.1016/j.indcrop.2021.113313
Sorensen, J. M. (2000). Melissa Officinalis. International Journal of Aromatherapy, 10(1-2), 7-15. doi: 10.1016/S0962-4562(00)80004-1
Suhl, J., Dannehl, D., Kloas, W., Baganz, D., Jobs, S., Scheibe, G., & Schmidt, U. (2016). Advanced aquaponics: Evaluation of intensive tomato production in aquaponics vs. conventional hydroponics. Agricultural Water Management, 178, 335–344. doi: 10.1016/j.agwat.2016.10.013.
Szab’o, K., Malekzadeh, M., Rad’acsi, P., Lad’anyi, M., Rajh’art, P., Inotai, K., Tavaszi- S’arosi, S., & N´Emeth, E. (2016). Could the variety influence the quantitative and qualitative outcome of lemon balm production? Ind. Crops Prod., 83, 710–716. doi: 10.1016/j.indcrop.2015.12.027
United Nations Educational, Scientific and Cultural Organization (UNESCO). (2021). World Water Development Report: Valuing Water. UNESCO.
Rijin, J. van. (2013). Waste treatment in recirculating aquaculture systems. Aquac. Eng., 53, 49– 56. doi: 10.1016/j.aquaeng.2012.11.010
Venskutonis, R., Gruzdienè, Tirzite, D., & Tirzitis, G. (2005). Assessment of antioxidant activity of plant extracts by different methods. Acta Horticulture, 677(677), 99-107. doi: 10.17660/ActaHortic.2005.677.13
Viegas, R. M., França, C. L., Castro, J. S., Castro, J. J. P., Santana, T. C., Costa-Lima, M. P. G., Carvalho Neta, R. N. F., Carneiro, C. R. P., & Teixeira, E. G. (2020). Eugenol as an efficient anesthetic for neotropical fish Prochilodus nigricans (Teleostei, Prochilodontidae). Arq. Bras. Med. Vet. Zootec., 72(5), 1813-1820. doi: 10.1590/1678-4162-11866
Yep, B., & Zheng, Y. (2019). Aquaponic trends and challenges: A review. J. Clean. Prod., 228, 1586–1599. doi: 10.1016/j.jclepro.2019.04.290
Yildiz, H. Y., Robaina, L., Pirhonen, J., Mente, E., Domínguez, D., & Parisi, G. (2017). Fish welfare in aquaponics system: its relation to water quality with an emphasis on feed and faeces-a review. Water, 9, 13. doi: 10.3390/w9010013
Wongkiew, S., Hu, Z., Chandran, K., Lee, J. W., & Khanal, S. K. (2017). Nitrogen transformations in aquaponic systems: A review. Aqua. Eng., 76, 1-43. doi:10.1016/j.aquaeng.2017.01.004
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ciência e Natura

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To access the DECLARATION AND TRANSFER OF COPYRIGHT AUTHOR’S DECLARATION AND COPYRIGHT LICENSE click here.
Ethical Guidelines for Journal Publication
The Ciência e Natura journal is committed to ensuring ethics in publication and quality of articles.
Conformance to standards of ethical behavior is therefore expected of all parties involved: Authors, Editors, Reviewers, and the Publisher.
In particular,
Authors: Authors should present an objective discussion of the significance of research work as well as sufficient detail and references to permit others to replicate the experiments. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. Review Articles should also be objective, comprehensive, and accurate accounts of the state of the art. The Authors should ensure that their work is entirely original works, and if the work and/or words of others have been used, this has been appropriately acknowledged. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. Authors should not submit articles describing essentially the same research to more than one journal. The corresponding Author should ensure that there is a full consensus of all Co-authors in approving the final version of the paper and its submission for publication.
Editors: Editors should evaluate manuscripts exclusively on the basis of their academic merit. An Editor must not use unpublished information in the editor's own research without the express written consent of the Author. Editors should take reasonable responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper.
Reviewers: Any manuscripts received for review must be treated as confidential documents. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should be conducted objectively, and observations should be formulated clearly with supporting arguments, so that Authors can use them for improving the paper. Any selected Reviewer who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the Editor and excuse himself from the review process. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.