Growth of fingerlings in different stocking densities in tropical aquaponic system of basil production

Authors

Keywords:

Aquaponics, nutrient cycling, water recirculation, fish production

Abstract

Aquaponics proposes a synergistic relationship between aquaculture and hydroponic production, with the principle of imitating nature, favoring nutrient cycling and water recirculation. The aim of this work was to evaluate fish and vegetable production, as well as water quality in the constituents of small-scale tropical aquaponic systems. The fish systems consisted of tanks with 3m³ of volume and different densities, T1 (72 fish-³); T2 (144 fish-³); T3 (216 fish-³), populated with Nile tilapia (Oreochromis niloticus), with filters for the nitrification process. Plant production systems have 12 channels (6m long) of PCV per fish tank, filled with gravel and spacing 15 cm per plant, basil (Ocimum basilicum). The experiment lasted 45 days, being replicated. For the analysis of fish and plant performance, biometrics were performed every 15 days. The results demonstrate that animal growth, evaluated by weight gain, total length and standard length of the treatments did not show statistically significant differences, as well as for plant parameters, but in all treatments both showed satisfactory growth. The water quality parameters remained as recommended for aquaponics. Aquaponic systems have demonstrated their viability in animal and plant production in the tropics.

Downloads

Download data is not yet available.

Author Biographies

Rodrigo Diana Navarro, Universidade de Brasília, Brasília, BR

Possui graduação em Zootecnia pela Universidade Federal de Viçosa, Mestrado em Zootecnia pela Universidade Federal de Viçosa e Doutor em Zootecnia pela Universidade Federal de Minas Gerais. Doutorado sanduíche na Universidade Politécnica de Valencia, em Valência Espanha. Pós-doutor em Fisiologia da reprodução de peixe de água doce da na Universidade Federal de Lavras. Atualmente Professor Associado II de Aquicultura, Manejo de Animais Silvestres da Faculdade de Agronomia e Veterinária FAV da Universidade de Brasília, UnB.

Bernardo Simões Correa, Universidade de Brasília, Brasília, BR

Graduado pela Universidade Católica de Brasília - UCB em Ciências Biológicas, especialista em Piscicultura: Sanidade e Desenvolvimento Sustentável pela Universidade Estadual de Maringá - UEM e mestre em Meio Ambiente e Desenvolvimento Rural pela Universidade de Brasília - UnB.

Guilherme Crispim Hundley, Universidade de Brasília, Brasília, BR

Possui graduação pela San Diego State University(2001). Atualmente é Sócio da Aquaponia Brasileira. Tem experiência na área de Agronomia.

Goro Kodama, Universidade de Brasília, Brasília, BR

Possui graduação em Engenharia de Aqüicultura pela Universidade Federal de Santa Catarina. Atualmente é mestrando na área de Ciências Animais da FAV-UNB, com foco no estudo na área de viabilidade econômica do sistema de aquaponia no Distrito Federal.

References

ABBEY M, ANDERSON N O, YUE C, SCHERMANN M, PHELPS N, VENTURELLI P, VICKERS Z. Basil, Ocimum basilicum, yield in northern latitudinal aquaponic growing conditions. J World Aquac Soc. 2021; 1–18. doi: 10.1111/jwas.12819

ANGKHA B, VERMA A K, SANATH H K, PRAKASH C, THOMAS R M. Mobilization of mica by Bacillus sp. and its effect n Nile tilapia (Oreochromis niloticus) cum holy basil Ocimum tenuiflorum)–based aquaponic system. Aquaculture International 2020; 28:2045–2058. doi: 10.1007/s10499-020-00575-4

BARBOSA W W P. Aproveitamento do efluente da produção de Tilápia do Nilo (Oreochromis niloticus) para produção de manjerona (Origanum majorana) e manjericão (Ocimum basilicum) em sistemas de aquaponia. Master dissertation. Universidade Católica de Brasília – UCB, Brasília, Brazil; 2011. 55p.

CARNEIRO P C F, MORAIS C A R S, NUNES M U C, MARIA A N, FUJIMOTO R Y. Produção integrada de peixes e vegetais em aquaponia. Documento 189/2015 - Embrapa. Aracaju: Embrapa Tabuleiros Costeiros; 2015. 30p.

CORRÊA B R S, CRUZ JÚNIOR C A, CORRÊA V R S. A aquaponia como tecnologia social para a agricultura familiar. In: VII Simpósio Nacional de Ciência e Meio Ambiente; 2016. Anais eletrônicos (ISSN: 2179-5193). UniEvangélica. Anápolis, Brazil.

DESWATI H, SUYANI A K, MUCHTAR E F, ABE Y, YUSUF H, PARDI R. Copper, iron and zinc contents in water, pakcoy (Brassica rapa L.) and tilapia (Oreochromis niloticus) in the presence of aquaponics. Chem. 2019; 12, 40. doi: 10.31788/RJC.2019.121562

DESWATI D, SAFNI S, KHAIRIYAH K, YANIA E, YULIZAR Y, PARDIB H. Biofloc technology: water quality (pH, temperature, DO, COD, BOD) in a flood & drain aquaponic system. International Journal Of Environmental Analytical Chemistry; 2020. doi: 10.1080/03067319.2020.1817428

DIVER S. Aquaponics - Integration of hydroponics with aquaculture. National Sustainable Agriculture Information Service; 2006. 28p.

ESTIM A, SAUFIE S, MUSTAFA S. Water quality remediation using aquaponics sub-systems as biological and mechanical filters in aquaculture. Journal of Water Process Engineering. 2019; 30 100566. doi: 10.1016/j.jwpe.2018.02.001

FERRARENZI R S, BAILEY D S. Basil performance evaluation in aquaponics. HortTechnology. 2019; 29, 85 - 93. doi: 10.21273/HORTTECH03797-17.

FARIA R H S, MORAIS M, SORANNA M R G S, SALLUM W B. Manual de criação de peixes em viveiros. Companhia de Desenvolvimento do Vale do São Francisco, Codevasf. Brasília, Brazil; 2013. 139p.

GODDEK S, KEESMAN K J. Improving nutrient and water use efficiencies in multi-loop aquaponics systems. Aquaculture International. 2020; 28:2481–2490. doi: 10.1007/s10499-020-00600-6

GREENFELD A, BECKER N, BORNMAN J F, ANGEL D L. Identifying knowledge levels of aquaponics adopters. Environmental Science and Pollution Research. 2019. doi:10.1007/s11356-019-06758-8

HUNDLEY G M C, NAVARRO R D. Aquaponia: a integração entre piscicultura e a hidroponia. Revista Brasileira de Agropecuária Sustentável. 2013; v. 3, p. 52-61. doi:10.21206/rbas.v3i2.218

HUNDLEY G C, NAVARRO R D, FIGUEREDO C M G, NAVARRO F K S P, PEREIRA M M, RIBEIRO FILHO O P, SEIXAS FILHO J T. Aproveitamento do efluente da produção de tilápia do Nilo para o crescimento de manjerona (Origanum majorana) e manjericão (Origanum basilicum) em sistemas de Aquaponia. Revista Brasileira de Agropecuária Sustentável (RBAS). 2013; v. 3, p. 51-55. doi:10.21206/rbas.v3i1.188

HUNDLEY G C, NAVARRO F K S P, RIBEIRO FILHO O P, NAVARRO R D. Integration of Nile Tilapia (Oreochromis niloticus L.) production Origanum majorana L. and Ocimum basilicum L. using aquaponics technology. Acta Scientarum Technology, 2018; v. 40, e35460. doi:10.4025/actascitechnol.v40il.35460

HUSSAIN T, VERMA A K, TIWARI V K, PRAKASH C, RATHORE G, SHETE A P, SAHARAN N. Effect of water flow rates on growth of spinach plant in aquaponic system. Aquacult. Int. 2015; v. 23, n. 1, p. 369-84, 2015. doi: 10.1007%2Fs10499-014-9821-3.

JUNGE R, KÖNIG B, VILLARROEL M, KOMIVES T, JIJAKLI M H. Strategic Points in Aquaponics. Water. 2017; 9 (3), 182. doi: 10.3390/w9030182

KNAUS U, PALM H W. Effects of the fish species choice on vegetables in aquaponics under spring-summer conditions in northern Germany (Mecklen- burg Western Pomerania). Aquaculture. 2017; v. 473, p.62-73. doi: 10.1016/j. aquaculture.2017.01.020.

KÖNIG B, JANKER J, REINHARDT T, VILLARROEL M, JUNGE R. Analysis of aquaponics as an emerging technological innovation system. Journal of Cleaner Production. 2018; 180, 232-243. doi: 10.1016/j.jclepro.2018.01.037

KUBITZA F. Tilápia: tecnologia e planejamento na produção comercial. 2.ed. Jundiaí: F. Kubitza. Editora Kubitza. São Paulo, Brazil. 2011. 316p.

KYAW T Y, NG A K. Smart Aquaponics System for Urban Farming. Energy Procedia. 2017; 143, 342–347. doi: 10.1016/j.egypro.2017.12.694

LENNARD W A, LEONARD B V A. Comparison of Three Different Hydroponic Sub-systems (gravel bed, floating and nutrient film technique) in an Aquaponic Test System. Aquac Int. 2006; 14:539–550. doi:10/b8xgh6

LOVE D C, FRY J P, GENELLO L, HILL E S, FREDERICK J A, LI X, SEMMENS K. An International Survey of Aquaponics Practitioners. PLoS ONE. 2014; 9(7): e102662. doi: 10.1371/journal.pone.0102662

LOVE D C, FRY J P, GENELLO L, HILL E S, FREDERICK J A, LI X, SEMMENS K. Commercial aquaponics production and profitability: findings from an international survey. Aquaculture. 2015; 435, 67–74. doi: 10.1016/j.aquaculture.2014.09.023

MONSEES H, KLOAS W, WUERTZ S. Decoupled systems on trial: eliminating bottlenecks to improve aquaponic processes. PLoS One. 2017; 12:e0183056. doi:10.1371/journal.pone.0183056

PALM H W, KNAUS U, APPELBAUM S, GODDEK S, STRAUCH S M, VERMEULEN T, JIJAKLI M H, KOTZEN B. Towards commercial aquaponics: a review of systems, designs, scales and nomenclature. Aquacult Int. 2018; 26:813–842. doi:10.1007%2Fs10499-018-0249-z

PATIL P A, DUBE K, VERMA A K, CHADHA N K, SUNDARAY J K, JAYASANKAR P. Growth performance of goldfish, Carassius auratus and basil, Ocimum basilicum in media bed aquaponics. Indian J. Fish. 2019; v. 66, n. 1, p. 112-118. doi: 10.21077/ijf.2019.66.1.78353-15

RAKOCY J E, LOSORDO T M, MASSER M P. Recirculating aquaculture tank production systems: Aquaponics - Integrating fish and plant culture. Southern Reg. Aquaculture Center Publications; 2006. n. 454.

SANTOS E S, OLIVEIRA M A, MOTA S, AQUINO M D, VASCONCELOS M M. Crescimento e qualidade dos alevinos de Tilápia do Nilo produzidos em esgoto doméstico tratado. Revista Ciência Agronômica. 2009; (ISSN 1806-6690), v. 40, n. 2. p. 232-239.

SIRAKOV I, VELICHKOVA K. The Influence of Aquaponically Grown Duckweed (Lemna minuta Kunth) Used for Composition of Sustainable Diets on Hydrochemical and Technological Parameters in Carp (Cyprinus carpio L.). Turkish Journal of Fisheries and Aquatic Sciences. 2018; v. 18, n. 9., p. 1037-1044.

SIRAKOV I, VELICHKOVA K, STOYANOVA S, KAYMAKANOVA M D, SLAVCHEVA-SIRAKOVA D, ATANASOVA R, STAYKOV Y. Effect of symbiotic dietary supplementation on growth, physiological and immunological parameters in common carp (Cyprinus carpio L.) fingerlings and on yield and physiological parameters in mesocosmos aquaponic system. Bulgarian Journal of Agricultural Science, 2018; v. 24, n. 1, p.140-149. doi: 10.17221/8172-CJAS

SOMERVILLE C, COHEN M, PANTANELLA E, STANKUS A, LOVATELLI A. Small-scale aquaponic food production: integrated fish and plant farming. FAO Fisheries and Aquaculture Technical Papers nº. 589. Roma, FAO. 2014. 262 pp.

UNESCO. Relatório Mundial das Nações Unidas sobre Desenvolvimento dos Recursos Hídricos. In: Soluções baseadas na Natureza para a gestão da Água. Resumo Executivo. Representação UNESCO-Brasil, Brasília. Perúgia, Itália. 2018. 12p.

VELICHKOVA K, SIRAKOV I, VELEVA P. Use of Lemna minuta Kunth. for composition of sustainable diets and influence on hydrochemical, technological and blood biochemical parameters in common carp (Cyprinus carpio L.) cultivated in aquaponics. Bulgarian Journal of Agricultural Science. 2020; v. 26, n. 3, p. 674-679.

VILLARROEL M, JUNGE R, KOMIVES T, KÖNIG B, PLAZA I, BITTSÁNSZKY A, JOLY A. Survey of aquaponics in Europe. Water (Switzerland). 2016; 8(10):3–9. doi: 10.3390/w8100468

YEP B, ZHENG Y. Aquaponic trends and challenges – a review. J. Clean. Prod. 2019; 228:1586–1599. doi:10.1016/j.jclepro.2019.04.290

YUE C, VICKERS J, WANG J, ANDERSON N O, WISDORF L, BRADY J, SCHERMANN M, PHELPS N, VENTURELLI P. Consumer Acceptability of Aquaponically Grown Basil. Hortscience. 2020; 55(6):841–850. doi: 10.21273/HORTSCI14831-20

Published

2021-09-29

How to Cite

Navarro, R. D., Correa, B. S., Hundley, G. C., & Kodama, G. (2021). Growth of fingerlings in different stocking densities in tropical aquaponic system of basil production. Ciência E Natura, 43, e 95. Retrieved from https://periodicos.ufsm.br/cienciaenatura/article/view/63222