Analysis of the turbulence collapse in a closed channel with surface transient temperature conditions

Authors

DOI:

https://doi.org/10.5902/2179460X55229

Keywords:

CFD, Intermittency, LES, Turbulence

Abstract

NumericalFlow at the nocturnal atmospheric boundary layer, during the very stable flow regime (VSBL), is complex due to the almost complete suppression of the flow turbulence and its resurgence in the form of intermittent bursts of turbulence. The occurrence of intermittent flow in the stable boundary layer (SBL) may be associated with external flow phenomena such as low-level jets and wave phenomena. However, recent work suggests that intermittency may be a natural mode of VSBL, regimen when the flow is laminarizing. Thus, the present work aims to simulate a situation of the continuous increase of the stratification of the flow by continuously reducing the surface temperature of the flow in a closed channel. Numerical simulations were performed using large eddy simulation (LES), with a free software of computational fluid dynamics OpenFOAM. The results indicate that as the temperature gradient increases between the surface and the top of the vertical domain, the boundary layer turbulence near the surface is reduced and a jet is generated in the flow. In addition, as surface temperature decreases, intermittent events arise in the runoff.

Downloads

Download data is not yet available.

Author Biographies

Luis Fernando Camponogara, Universidade Federal do Pampa, Campus Alegrete, RS

Possui graduação em Engenharia Mecânica pela Universidade Federal do Pampa (2018), atualmente é mestrando em Engenharias pela Universidade Federal do Pampa.

Cristhian Hilberto Kirinus, Universidade Federal do Pampa, Campus Alegrete, RS

Graduando em Engenharia Mecânica pela Universidade Federal do Pampa.

Danilo Nogueira Lemes Junior, Universidade Federal do Pampa, Campus Alegrete, RS

Possui graduação em Engenharia Mecânica pela Universidade Federal do Pampa (2017) e atualmente é aluno do Programa de Pós Graduação em Engenharia (PPEng) da Universidade Federal do Pampa (UNIPAMPA).

Felipe Pereira Lamaizon, Universidade Federal do Pampa, Campus Alegrete, RS

Graduando em Engenharia Mecânica pela Universidade Federal do Pampa.

Maicon Fonseca Andrades, Universidade Federal do Pampa, Campus Alegrete, RS

Aluno do Programa de Pós Graduação em Engenharia da Universidade Federal do Pampa. Bacharel em engenharia mecânica pela mesma instituição.

Felipe Denardin Costa, Universidade Federal do Pampa, Campus Alegrete, RS

Possui graduação em Física Licenciatura Pela pela Universidade Federal de Santa Maria (2007), mestrado em Física pela Universidade Federal de Santa Maria (2009), e doutorado em Física pela Universidade Federal de Santa Maria (2011).

References

ACEVEDO, O. C.; COSTA, F. D.; DEGRAZIA, G. A. Turbulence formulation influence on the coupling state of an idealized stable boundary layer. Boundary-Layer Meteorology, v. 145, p. 211–228, 2012.

ACEVEDO, O. C.; MAHRT, L.; PUHALES, F. S.; COSTA, F. D.; MEDEIROS, L. E.; DEGRAZIA, G. A. Contrasting structures between the decoupled and coupled states of the stable boundary layer. Quarterly Journal of the Royal Meteorological Society, Wiley Online Library, v. 142, n. 695, p. 693–702, 2016.

DONDA, J.; HOOIJDONK, I. V.; MOENE, A.; JONKER, H.; HEIJST, G. van; CLERCX, H.; WIEL, B. van de. Collapse of turbulence in stably stratified channel flow: a transient phenomenon. Quarterly Journal of the Royal Meteorological Society, Wiley Online Library, v. 141, n. 691, p. 2137–2147, 2015.

HE, P.; BASU, S. Direct numerical simulation of intermittent turbulence under stably stratified conditions. Nonlinear Processes in Geophysics, Copernicus GmbH, v. 22, n. 4, p. 447–471, 2015.

HOLZMANN, T. Mathematics, numerics, derivations and OpenFOAM®. Loeben, Germany: Holzmann CFD, 2016. Disponível em: https://holzmann-cfd. Acesso em: 29 nov. 2017

KANG, Y.; BELUŠIC, D.; SMITH-MILES, K. Classes of structures in the stable atmospheric boundary layer. Quarterly Journal of the Royal Meteorological Society, Wiley Online Library, v. 141, n. 691, p. 2057–2069, 2015.

MAHRT, L.; VICKERS, D. Extremely weak mixing in stable conditions. Boundary-layer meteorology, Springer, v. 119, n. 1, p. 19–39, 2006.

OHYA, Y.; NAKAMURA, R.; UCHIDA, T. Intermittent bursting of turbulence in a stable boundary layer with low-level jet. Boundary-layer meteorology, Springer, v. 126, n. 3, p. 349–363, 2008.

PENTTINEN, O.; YASARI, E.; NILSSON, H. A pimplefoam tutorial for channel flow, with respect to different les models. Practice Periodical on Structural Design and Construction, v. 23, n. 2, p. 1–23, 2011.

STULL, R. B. An introduction to boundary layer meteorology. [S.l.]: Springer, 1988. v. 13.

SUN, J.; MAHRT, L.; BANTA, R. M.; PICHUGINA, Y. L. Turbulence regimes and turbulence intermittency in the stable boundary layer during cases-99. Journal of the Atmospheric Sciences, v. 69, n. 1, p. 338–351, 2012.

WHITE, F. M. Mecânica dos Fluidos-6. [S.l.]: AMGH Editora, 2010.

WIEL, B. Van de; MOENE, A.; JONKER, H. The cessation of continuous turbulence as precursor of the very stable nocturnal boundary layer. Journal of the Atmospheric Sciences, v. 69, n. 11, p. 3097–3115, 2012.

WIEL, B. Van de; MOENE, A.; JONKER, H.; BAAS, P.; BASU, S.; DONDA, J.; SUN, J.; HOLTSLAG, A. The minimum wind speed for sustainable turbulence in the nocturnal boundary layer. Journal of the Atmospheric Sciences, v. 69, n. 11, p. 3116–3127, 2012.

How to Cite

Camponogara, L. F., Kirinus, C. H., Lemes Junior, D. N., Lamaizon, F. P., Andrades, M. F., & Costa, F. D. (2020). Analysis of the turbulence collapse in a closed channel with surface transient temperature conditions. Ciência E Natura, 42, e41. https://doi.org/10.5902/2179460X55229

Most read articles by the same author(s)

<< < 1 2 3 

Similar Articles

You may also start an advanced similarity search for this article.