Analysis of the turbulence collapse in a closed channel with surface transient temperature conditions
DOI:
https://doi.org/10.5902/2179460X55229Keywords:
CFD, Intermittency, LES, TurbulenceAbstract
NumericalFlow at the nocturnal atmospheric boundary layer, during the very stable flow regime (VSBL), is complex due to the almost complete suppression of the flow turbulence and its resurgence in the form of intermittent bursts of turbulence. The occurrence of intermittent flow in the stable boundary layer (SBL) may be associated with external flow phenomena such as low-level jets and wave phenomena. However, recent work suggests that intermittency may be a natural mode of VSBL, regimen when the flow is laminarizing. Thus, the present work aims to simulate a situation of the continuous increase of the stratification of the flow by continuously reducing the surface temperature of the flow in a closed channel. Numerical simulations were performed using large eddy simulation (LES), with a free software of computational fluid dynamics OpenFOAM. The results indicate that as the temperature gradient increases between the surface and the top of the vertical domain, the boundary layer turbulence near the surface is reduced and a jet is generated in the flow. In addition, as surface temperature decreases, intermittent events arise in the runoff.Downloads
References
ACEVEDO, O. C.; COSTA, F. D.; DEGRAZIA, G. A. Turbulence formulation influence on the coupling state of an idealized stable boundary layer. Boundary-Layer Meteorology, v. 145, p. 211–228, 2012.
ACEVEDO, O. C.; MAHRT, L.; PUHALES, F. S.; COSTA, F. D.; MEDEIROS, L. E.; DEGRAZIA, G. A. Contrasting structures between the decoupled and coupled states of the stable boundary layer. Quarterly Journal of the Royal Meteorological Society, Wiley Online Library, v. 142, n. 695, p. 693–702, 2016.
DONDA, J.; HOOIJDONK, I. V.; MOENE, A.; JONKER, H.; HEIJST, G. van; CLERCX, H.; WIEL, B. van de. Collapse of turbulence in stably stratified channel flow: a transient phenomenon. Quarterly Journal of the Royal Meteorological Society, Wiley Online Library, v. 141, n. 691, p. 2137–2147, 2015.
HE, P.; BASU, S. Direct numerical simulation of intermittent turbulence under stably stratified conditions. Nonlinear Processes in Geophysics, Copernicus GmbH, v. 22, n. 4, p. 447–471, 2015.
HOLZMANN, T. Mathematics, numerics, derivations and OpenFOAM®. Loeben, Germany: Holzmann CFD, 2016. Disponível em: https://holzmann-cfd. Acesso em: 29 nov. 2017
KANG, Y.; BELUŠIC, D.; SMITH-MILES, K. Classes of structures in the stable atmospheric boundary layer. Quarterly Journal of the Royal Meteorological Society, Wiley Online Library, v. 141, n. 691, p. 2057–2069, 2015.
MAHRT, L.; VICKERS, D. Extremely weak mixing in stable conditions. Boundary-layer meteorology, Springer, v. 119, n. 1, p. 19–39, 2006.
OHYA, Y.; NAKAMURA, R.; UCHIDA, T. Intermittent bursting of turbulence in a stable boundary layer with low-level jet. Boundary-layer meteorology, Springer, v. 126, n. 3, p. 349–363, 2008.
PENTTINEN, O.; YASARI, E.; NILSSON, H. A pimplefoam tutorial for channel flow, with respect to different les models. Practice Periodical on Structural Design and Construction, v. 23, n. 2, p. 1–23, 2011.
STULL, R. B. An introduction to boundary layer meteorology. [S.l.]: Springer, 1988. v. 13.
SUN, J.; MAHRT, L.; BANTA, R. M.; PICHUGINA, Y. L. Turbulence regimes and turbulence intermittency in the stable boundary layer during cases-99. Journal of the Atmospheric Sciences, v. 69, n. 1, p. 338–351, 2012.
WHITE, F. M. Mecânica dos Fluidos-6. [S.l.]: AMGH Editora, 2010.
WIEL, B. Van de; MOENE, A.; JONKER, H. The cessation of continuous turbulence as precursor of the very stable nocturnal boundary layer. Journal of the Atmospheric Sciences, v. 69, n. 11, p. 3097–3115, 2012.
WIEL, B. Van de; MOENE, A.; JONKER, H.; BAAS, P.; BASU, S.; DONDA, J.; SUN, J.; HOLTSLAG, A. The minimum wind speed for sustainable turbulence in the nocturnal boundary layer. Journal of the Atmospheric Sciences, v. 69, n. 11, p. 3116–3127, 2012.
Downloads
How to Cite
Issue
Section
License
To access the DECLARATION AND TRANSFER OF COPYRIGHT AUTHOR’S DECLARATION AND COPYRIGHT LICENSE click here.
Ethical Guidelines for Journal Publication
The Ciência e Natura journal is committed to ensuring ethics in publication and quality of articles.
Conformance to standards of ethical behavior is therefore expected of all parties involved: Authors, Editors, Reviewers, and the Publisher.
In particular,
Authors: Authors should present an objective discussion of the significance of research work as well as sufficient detail and references to permit others to replicate the experiments. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. Review Articles should also be objective, comprehensive, and accurate accounts of the state of the art. The Authors should ensure that their work is entirely original works, and if the work and/or words of others have been used, this has been appropriately acknowledged. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. Authors should not submit articles describing essentially the same research to more than one journal. The corresponding Author should ensure that there is a full consensus of all Co-authors in approving the final version of the paper and its submission for publication.
Editors: Editors should evaluate manuscripts exclusively on the basis of their academic merit. An Editor must not use unpublished information in the editor's own research without the express written consent of the Author. Editors should take reasonable responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper.
Reviewers: Any manuscripts received for review must be treated as confidential documents. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should be conducted objectively, and observations should be formulated clearly with supporting arguments, so that Authors can use them for improving the paper. Any selected Reviewer who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the Editor and excuse himself from the review process. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.