Characterization of Laminar-Turbulent transition in a plane Couette flow due to stable stratification using CFD

Authors

DOI:

https://doi.org/10.5902/2179460X45341

Keywords:

Large Eddy Simulation, Intermittency, Stable Boundary Layer, Laminar-Turbulent Transition

Abstract

Despite recent advances in understanding the physical capacity of the thermal and mechanical parameters that control or isolate the nocturnal boundary layer, these are not yet fully understood. The emergence of natural intermittence in runoff is also not a consensus in the boundary layer scientific community. Many of the studies that present numerical studies on intermittence make use of external flow, forcing that is responsible for the resurgence of turbulence. Thus, the current proposal aims to develop a numerical experiment to study the laminar-turbulent transition using computational fluid dynamics. In this case, the thermal stratification will be applied to a turbulent flow entirely generated to obtain conditions of robust stability and to reproduce an intermittent flow. The results show that when the flow regime is thoroughly turbulent, all levels are coupled by turbulence, making speed and temperature fields more homogeneous in the center of the domain. The results show that when the flow regime is completely turbulent, all levels are coupled by turbulence, making speed and temperature fields more homogeneous in the center of the domain. As a temperature gradient is introduced into the flow, the vertical levels become uncoupled, and under very stable conditions, the turbulence is wholly suppressed. While the distinction between flow regimes is evident, the transition between flow regimes occurs intermittently.

Downloads

Download data is not yet available.

Author Biographies

Jean Jonathan Schuster, Universidade Federal do Pampa, Alegrete, RS

Possui graduação em Engenharia Mecânica pela Universidade Federal do Pampa, mestrado em Engenharias também pela Universidade Federal do Pampa

Áttila Leães Rodrigues, Universidade Federal do Pampa, Alegrete, RS

Bio: Graduação, mestrado e doutorado em Física pelo IF-USP. Atualmente atuando como pós-doc no Depto. de Engenharia de Minas da UFRGS principalmente com aplicações de técnicas de aprendizado de máquina

Luis Fernando Camponogara, Universidade Federal do Pampa, Alegrete, RS

Possui graduação em Engenharia Mecânica pela Universidade Federal do Pampa, atualmente é mestrando em Engenharias pela Universidade Federal do Pampa

Luis Eduardo Medeiros, Universidade Federal do Pampa, Alegrete, RS

Possui graduação em Física Bacharelado pela Universidade Federal de Santa Maria, mestrado em Física pela Universidade Federal de Santa Maria, e doutorado em Atmospheric Science pela State University of New York at Albany 

Felipe Denardin Costa, Universidade Federal do Pampa, Alegrete, RS

Possui graduação em Física Licenciatura pela pela Universidade Federal de Santa Maria, mestrado em Física pela Universidade Federal de Santa Maria, e doutorado em Física pela Universidade Federal de Santa Maria

References

ACEVEDO, O. C.; COSTA, F. D.; DEGRAZIA, G. A. Turbulence formulation influence on the coupling state of an idealized stable boundary layer. Boundary-Layer Meteorology, v. 145, p. 211–228, 2012.

BOING, S. J.; JONKER, H. J.; WIEL, B. J. V. D.; MOENE, A. F. 7.2 intermittent turbulence in stratified flow over a canopy. 2010.

COSTA, F. D.; ACEVEDO, O. C.; MOMBACH, J. C. M.; DEGRAZIA, G. A. A simplified model for intermittent turbulence in the nocturnal boundary layer. Journal of the Atmospheric Sciences, v. 68, n. 8, p. 1714–1729, 2011.

CUXART, J.; JIMÉNEZ, M. Mixing processes in a nocturnal low-level jet: An les study. Journal of the atmospheric sciences, v. 64, n. 5, p. 1666–1679, 2007.

DONDA, J.; HOOIJDONK, I. V.; MOENE, A.; JONKER, H.; HEIJST, G. van; CLERCX, H.; WIEL, B. van de. Collapse of turbulence in stably stratified channel flow: a transient phenomenon. Quarterly Journal of the Royal Meteorological Society, Wiley Online Library, v. 141, n. 691, p. 2137–2147, 2015.

HOLZMANN, T. Mathematics, numerics, derivations and OpenFOAM®. Loeben, Germany: Holzmann CFD, 2016. Disponível em: https://holzmann-cfd. Acesso em: 29 nov. 2017.

KIM, J.; MOIN, P.; MOSER, R. Turbulence statistics in fully developed channel flow at low Reynolds number. Journal of fluid mechanics, Cambridge University Press, v. 177, p. 133–166, 1987.

KOLMOGOROV, A. N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Cr Acad. Sci. URSS, v. 30, p. 301–305, 1941.

LAGHA, M.; KIM, J.; ELDREDGE, J.; ZHONG, X. A numerical study of compressible turbulent boundary layers. Physics of fluids, AIP, v. 23, n. 1, p. 015106, 2011.

LEE, M. J. The structure of turbulence in a simulated plane Couette flow. In: Proc. 8th Symp. Turbulent Shear Flow. [S.l.: s.n.], 1991. v. 5.

MAHRT, L. Stratified atmospheric boundary layers. Boundary-Layer Meteorology, v. 90, p. 375–396, 1999.

MAHRT, L.; SUN, J.; BLUMEN, W.; DELANY, T.; ONCLEY, S. Nocturnal boundary-layer regimes. Boundary-Layer Meteorology, v. 88, p. 255–278, 1998.

MORLET, J.; ARENS, G.; FOURGEAU, E.; GLARD, D. Wave propagation and sampling theory—part i: Complex signal and scattering in multilayered media. Geophysics, Society of Exploration Geophysicists, v. 47, n. 2, p. 203–221, 1982.

MORLET, J.; ARENS, G.; FOURGEAU, E.; GIARD, D. Wave propagation and sampling theory—part ii: Sampling theory and complex waves. Geophysics, Society of Exploration Geophysicists, v. 47, n. 2, p. 222–236, 1982.

OHYA, Y.; NAKAMURA, R.; UCHIDA, T. Intermittent bursting of turbulence in a stable boundary layer with low-level jet. Boundary-layer meteorology, Springer, v. 126, n. 3, p. 349–363, 2008.

PENTTINEN, O.; YASARI, E.; NILSSON, H. A pimplefoam tutorial for channel flow, with respect to different les models. Practice Periodical on Structural Design and Construction, v. 23, n. 2, p. 1–23, 2011.

POPE, S. B. Turbulent flows. [S.l.]: IOP Publishing, 2001.

WHITE, F. M. Mecânica dos Fluidos-6. [S.l.]: AMGH Editora, 2010.

ZHOU, B.; CHOW, F. K. Large-eddy simulation of the stable boundary layer with explicit filtering and reconstruction turbulence modeling. Journal of the Atmospheric Sciences, v. 68, n. 9, p. 2142– 2155, 2011.

Published

2020-08-28

How to Cite

Schuster, J. J., Rodrigues, Áttila L., Camponogara, L. F., Medeiros, L. E., & Costa, F. D. (2020). Characterization of Laminar-Turbulent transition in a plane Couette flow due to stable stratification using CFD. Ciência E Natura, 42, e10. https://doi.org/10.5902/2179460X45341

Most read articles by the same author(s)

1 2 3 > >> 

Similar Articles

You may also start an advanced similarity search for this article.