Can Brazil produce enough rice to meet demand in 2028?

Isabela Bulegon Pilecco, Michel Rocha da Silva, Giovana Ghisleni Ribas, Ary Jose Duarte Junior, Nereu Augusto Streck, Alencar Junior Zanon

Abstract


The objectives of the study were estimate the additional yield that may be achieved by reducing the yield gap in actual rice area, evaluate if irrigated rice production meet future demand for rice without increase area and determine sowing date that allows maximum yield potential. The yield gap (Yg) was determined by the difference between yield potential (Yp) and actual yield (Ya). The Ya was obtained from surveys applied to the rice producers. The Ya was 51% of Yp, and the Yg was 49%. In a scenario of high demand, if the yields follow the historical rate of gain, the production should not be sufficient to meet projected demand without 6% expansion of the currently cultivated area, whereas for a scenario of low demand it should be sufficient. Moreover, for the low and high demand scenarios, if the national average yield reaches 80% of the rice Yp, a reduction until 29% in the current irrigated rice area can occur. Sowing between September and mid-November is a way of making it possible to obtain yields close to 80% of Yp without increasing production costs. This study can be used as an aid in the search for world food security.


Keywords


Oryza sativa; Yield gap; Food security

Full Text:

HTML

References


BURNEY J, DAVIS SJ, LOBELL DB. Greenhouse gas mitigation by agricultural intensification. Proceedings of the National Academy of Science. 2017; 107:12052–12057. DOI: 10.1073/pnas.0914216107.

CASSMAN KG. Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. PNAS. 1999: 96:5952-5959. DOI: 10.1073/pnas.96.11.5952.

CASSMAN KG, DOBERMANN A, WALTERS DT, YANG H. Meeting cereal demand while protecting natural resources and improving environmental quality. Annual Review Environmental Resources. 2003; 28:315–358. DOI: 10.1146/annurev.energy.28.040202.122858.

COMMISSION ÉCONOMIQUE DES NATIONS UNIES POUR L’AFRIQUE. Profil démographique de l’Afrique. Addis-Abeba, Éthiopie: UNECA, 2016. 78p. ISBN: 978-99944-68-07-2.

COMPANHIA NACIONAL DO ABASTECIMENTO [Internet]. [cited 2018 March 06]. Perspectivas para a agropecuária. 2015. Available from: www.conab.gov.br.

COMPANHIA NACIONAL DE ABASTECIMENTO. Acompanhamento da safra brasileira de grãos. Brasília: CONAB, 2020, v7, n4. 104 p. ISSN: 2318-6852.

EVANS LT. Crop evolution, adaptation, and yield. Cambridge: Cambridge University Press; 1993. 500p.

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS. O estado de segurança alimentar e nutricional no Brasil. – Um retrato multidimensional. Brasília: FAO, 2014. 90p.

FEDERAÇÃO DAS INDÚSTRIAS DO ESTADO DE SÃO PAULO. Outlook Fiesp 2028: projeções para o agronegócio brasileiro. São Paulo: FIESP, 2018. 86p. ISBN: 978-85-7201035-1.

FREITAS TFS, SILVA PRF, MARIOT CHP, MENEZES VG, ANGHINONI I, BREDEMEIER C et al. Grain yield and efficiency of broadcast nitrogen in flooded rice planted in distinct periods in Rio Grande do Sul state, Brazil. Revista Brasileira de Ciência do Solo. 2008; 32:2397-2405. DOI: 10.1590/S0100-06832008000600018.

GRASSINI P, ESKRIDGE KM, CASSMAN KG. Distinguishing between yield advances and yield plateaus in historical crop production trends. Nature Communications. 2013; 4:2918. DOI: 10.1038/ncomms3918.

GLOBAL YIELD GAP ANALYSIS [Internet]. 2019. [cited 2019 April 16]. Available from: http://www.yieldgap.org

INSTITUTO RIO GRANDENSE DO ARROZ [Internet]. 2019. [cited 2019 November 08]. Available from: https://irga.rs.gov.br/.

KONING N, VAN ITTERSUM MK. Will the world have enought to eat? Current Opinion in Environmental Sustainability. 2009; 1:77-82. DOI: 10.1016/j.cosust.2009.07.005.

MINISTÉRIO DA AGRICULTURA, PECUÁRIA E ABASTECIMENTO. Projeções do agronegócio Brasil 2017/18 a 2027/28, projeções de longo prazo. Brasília: MAPA - Secretaria de Política Agrícola, 2018. 112p. ISBN 978-85-7991-116-3

MARIN FR, MARTHA GB, CASSMAN KG, GRASSINI P. Prospects for Increasing Sugarcane and Bioethanol Productionon Existing Crop Area in Brazil. BioScience. 2016a; 66:307-316. DOI: 10.1093/biosci/biw009.

MARIN FR, PILAU FG, SPOLADOR HFS, OTTO R, PEDREIRA CGS. Sustainable intensification of Brazilian agriculture: scenarios for 2050. Revista de Política Agrícola. 2016b; 25:108-124.

MATZENAUER, R; RADIN, B; ALMEIDA, IR (Ed.). Atlas Climático: Rio Grande do Sul. Porto Alegre: Secretaria da Agricultura Pecuária e Agronegócio; Fundação Estadual de Pesquisa Agropecuária (FEPAGRO), 2011.

RIBAS, GG. IMPROVING THE SIMULATION OF RICE PRODUCTIVITY IN RIO GRANDE DO SUL BY INTRODUCING HYBRIDS IN THE SIMULARROZ MODEL. 2016. 58 f. Dissertação (Mestrado em Engenharia Agrícola) - Universidade Federal de Santa Maria, Santa Maria, 2016.

ROSA HT, WALTER LC, STRECK NA, CARLI C, RIBAS GG, MARCHESAN E. Simulation of rice growth and yield in Rio Grande do Sul with the SimulArroz. Revista Brasileira de Engenharia Agrícola e Ambiental. 2015; 19:1159–1165. DOI: 10.1590/1807-1929/agriambi.v19n12p1159-1165.

SANTOS AB, COSTA JD. Behaviour of upland rice varieties at diferente plant densities, under and without supplemental irrigation. Scientia Agricola. 1995; 52:1-8. DOI: 10.1590/S0103-90161995000100002.

SLATON NA, LINSCOMBE SD, NORMAN RJ, GBUR EE. Seeding date effect on Rice grain yield in Arkansas and Louisiana. Agronomy jornal. 2003; 95:218-223. DOI: 10.2134/agronj2003.2180.

STRASSBURG BBN, LATAWIEC AE, BARIONI LG, NOBRE CA, SILVA VP, VALENTIM JF, et al. hen enough should be enough: Improving the use of current agricultural lands could meet production demands and spare natural habitats in Brazil. Global Environmental Change. 2014; 28:84–97. DOI: 10.1016/j.gloenvcha.2014.06.001.

STRECK NA, CHARÃO AS, WALTER LC, ROSA HT, BENEDETTI RR, MARCHESAN E, et al. SimulArroz: um aplicativo para estimar a produtividade de arroz no Rio Grande do Sul. In: VIII Congresso Sul Brasileiro de Arroz Irrigado; 2013; Santa Maria. p.1618 1627.

TIMSINA J, WOLF J, GUILPART N, VAN BUSSEL LGJ, GRASSINI P, VAN WART J, et al. Can Bangladesh produce enough cereals to meet future demand? Agricultural Systems. 2016; 163:36-44. DOI: 10.1016/j.agsy.2016.11.003.

VAN ITTERSUM MK, VAN BUSSEL LGJ, WOLF J, GRASSINI P, VAN WART J, CLAESSENS NGL, et al. Can sub-Saharan Africa feed itself? Proceedings of the National Academy of Science. 2016;113(52):14964-14969.DOI: 10.1073/pnas.1610359113.

VAN OORT PAJ, SAITO K, TANAKA A, AMOVIN-ASSAGBA E, VAN BUSSEL LGJ, VAN WART J, et al. Assessment of rice self-sufficiency in 2025 in eight African countries. Global Food Security. 2015; 5:39-49. DOI: 10.1016/j.gfs.2015.01.002.

VAN WART J, KERSEBAUM C, PENG S, MILNER M, CASSMAN KG. Estimating crop yield potential at regional to national scales. Field CropsResearch. 2013; 143:34–43. DOI: 10.1016/j.fcr.2012.11.018.

UNITED NATIONS POPULATION FUND [Internet]. [cited 2018 April 02]. Available from: www.unfpa.org/world-population-trends.

USDA/FAZ [Internet]. Grain: world markets and trade. [cited 2018 November 11]. Available from: https://apps.fas.usda.gov/psdonline/circulars/grain.pdf.

WORLD METEOROLOGICAL ORGANIZATION. Guide to Agricultural Meteorological Practices. Geneva: World Meteorological Organization; 2012. 799p.




DOI: https://doi.org/10.5902/2179460X42318

Copyright (c) 2020 Ciência e Natura

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.