Study of biofilms with kefir associated with soy germs (Glycine max (L.) Merril)
DOI:
https://doi.org/10.5902/2179460X40913Keywords:
Biofilms; , Kefir;, Soy germs;, Isoflavones; , AFMAbstract
The aim of this study was to investigate biofilm formation with kefir grains in the presence of soy extract. Kefir grains and soy germs at different concentrations were grown in the culture medium comprising brown sugar solution (40 gl-1) for 20 days. Biofilms that formed in this period were then removed and the pH of the culture medium were measured. Isoflavones of the medium of culture were extracted and quantified by high-performance liquid chromatography (HPLC). The superficial properties of the selected biofilms were analyzed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The culture medium after 20 days was found to have 19.59±3.57 µgl-1 of glycitein and 23.86±2.21 µgl-1 of genistein. The best concentration of kefir grains in order to extract isoflavone was 40 gl-1, with yield levels at 11.67 µgl-1 of glycitein and 17.78 µgl-1 of genistein. The analysis by AFM and SEM confirmed the increased roughness of the biofilm, dependent of the concentration of the amount of kefir grains. It is suggested that the biofilms incorporated the isoflavones and has potential for therapeutic applications in several pathologies wherein it is necessary the antioxidative processes.
Downloads
References
BERHOW, M. A. Modern analytical techniques for flavonoid determination. In: BUSLIG, B. S.; MANTHEY, J. A. (ed.). Flavonoids in the living cell. New York: Klusher Academic, p. 61-76, 2002.
BREYNAERT, A.; BOSSCHER, D.; KAHNT, A.; CLAEYS, M.; COS, P.; PIETERS, L.; HERMANS N. Development and Validation of an in vitro experimental GastroIntestinal Dialysis Model with Colon Phase to Study the Availability and Colonic Metabolisation of Polyphenolic Compounds. Planta Med., [s.l.], v. 81, n. 12-13, p. 1075-1083, 2015.
CAESAR, I. C.; BRAGA, F. C.; VIANNA-SOARES, C. D.; NUNAN, E. A.; BARBOSA, T. A. F.; MOREIRA-CAMPOS, L. M. M. Determinação de daidzeína, genisteína e gliciteína em cápsulas de isoflavonas por cromatografia em camada delgada (CCD) e cromatografia líquida de alta eficiência (CLAE). Braz J. Pharmacog., [s.l.], v. 17, n. 4, p. 616-625, 2007.
CARRÃO-PANIZZI, M. C.; BERHOW, M., MANDARINO, J. M. G., OLIVEIRA, M. C. N. Enviromental and genetic variation of isoflvones content of soybean seeds grown in Brazil. Pesq. Agrop. Bras., [s.l.], v. 44, n. 11, p. 1444-1451, 2009.
CARRÃO-PANIZZI, M. C.; FAVONI, S. P. G.; KIKUCHI, A. Extraction time for isoflvone determination. Braz. Arch. Biol. Technol., [s.l.], v. 45, n. 4, p. 515-518, 2002.
COWARD, L.; BARNES, N. C.; SETCHELL, K. D. R.; BARNES, S. Genistein, Daidzein, and their b-glucoside conjugates: Antitumor isoflavones in soybean foods from American and Asian diets. J Agric Food Chem., [s.l.], v. 41, p. 1961-1967, 1933.
FARNWORTH, E. R. Kefir – a complex probiotic. Food Sci Tech Bull Funct Food., [s.l.], v. 5, n. 2, p. 1-17, 2005.
GÓES-FAVONI, S. P.; CARRÃO-PANIZZI, M. C.; BELÉIA, A. D. P. Changes of isoflavone in soybean cotyledons soaked in different volumes of water. Food Chem., [s.l.], v. 119, p. 1605-1612, 2010.
GUPTA, S.; CHEN, W. N. A metabolomics approach to evaluate post-fermentation enhancement of daidzein and genistein in a green okara extract. J Sci Food Agric., [s.l.], v.66 (21), 5373-5381, 2018.
IMAI, S. Soybean and processed soy foods ingredients and their role in cardiometabolic risk prevention. Recent Pat Food Nutr Agric., [s.l.] v. 7, n. 2, p. 75-92, 2015.
HAN, X.; ZHANG, L. J.; WU, H. Y.; WU, Y. F.; ZHAO, S. N. Investigation of microorganisms involved in kefir biofilm formation. Antonie Van Leeuwenhoek, [s.l.], v. 111, n. 12, p. 2361-2370, 2018.
HU, C.; WONG, W. T.; WU, R.; LAI, W. F. Biochemistry and use of soybean isoflavones in functional food development. Crit Rev Food Sci Nutr., [s.l.], v. 60, n. 12, p. 2098-2112, 2019.
KHULBE, K. C.; FENG, C.; MATSUURA, T. Synthetic Polymeric Membranes, Characterization by Atomic Force Microscopy. 1. ed. [s.l.]: Springer, 2008.
MATOS, R. S.; PINTO, E. P.; RAMOS, G. Q.; FONSECA DE ALBUQUERQUE, M. D.; FONSECA FILHO, H. D. Stereometric characterization of kefir microbial films associated with Maytenus rigida extract. Microsc Res Tech., [s.l.], v. 83, n. 11, p. 1401-1410, 2020
OH, H. G.; NALLAMSHETTY, S.; RHEE, E. Increased Risk of Progression of Coronary Artery Calcification in Male Subjects with High Baseline Waist-to-Height Ratio: The Kangbuk Samsung Health. Study Diabetes Metab., [s.l], v. 40, n. 1, p. 54-61, 2016.
OLIVEIRA, A. F.; SANTOS, C. B. R.; FERREIRA, A. M.; BEZERRA, R. M.; ZAMORA, R. R. M.; CRUZ, R. A. S.; AMADO, J. R. R.; CARVALHO, J. C. T. A Viability Study for the Production of Biofilms and In Silico Predictions of Major Compounds in Kefir. Journal of Computational and Theoretical Nanoscience., [s.l.], v. 14, p. 1–12, 2017.
PRUDHVIRAJ, G.; VAIDYA, Y.; SINGH, S. K.; YADAV, A. K.; KAUR, P.; GULATI, M.; GOWTHAMARAJAN, K. M. Effect of co-administration of probiotics with polysaccharide based colon targeted delivery systems to optimize site specific drug release. Eur J Pharm Biopharm., [s.l.], v. 97, p. 164-172, 2015.
PURI, A.; MIR, S. R.; PANDA, B. P. Effect of sequential bio-processing conditions on the content and composition of vitamin K2 and isoflavones in fermented soy food. J Food Sci Technol., [s.l.], v. 52, n. 12, p. 8228-8235, 2015.
ROSSI, E. A.; ROSIER, I.; DÂMASO, A. R.; CARLOS, I. Z.; VENDRAMINI, R. C.; ABDALLA, D. S. P.; TALARICO, V. H.; MINTO, D. F. Determinação de isoflavonas nas diversas etapas do processamento do “iogurte” de soja. Alim Nut., [s.l.], v. 1, n. 5, p. 93-99, 2004.
STATGRAPHICS CENTURION XVI SOFTWARE (Statpoint Technologies Inc Warrenton VA USA), 2010.
XU, L.; DU, B.; XU, B. A systematic, comparative study on the beneficial health components and antioxidant activities of commercially fermented soy products marketed in China. Food Chem., [s.l.], v. 174, p. 202-213, 2014
YOO, H. W.; CHANG, M. J.; KIM, S. H. Fermented soybeans by Rhizopus oligosporus reduce femoral bone loss in ovariectomized rats. Nutr Res Pract., [s.l.], v. 8, p. 539-543, 2015.
ZHANG, W.; DAI, W.; TSAI, S. M.; ZEHNDER, S. M.; SARNTINORANONT, M.; ANGELINI, T. E. Surface indentation and fluid intake generated by the polymer matrix of Bacillus subtilis biofilms. Soft Matter., [s.l.], v. 11, n. 18, p. 3612-3617, 2015.
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Ciência e Natura
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To access the DECLARATION AND TRANSFER OF COPYRIGHT AUTHOR’S DECLARATION AND COPYRIGHT LICENSE click here.
Ethical Guidelines for Journal Publication
The Ciência e Natura journal is committed to ensuring ethics in publication and quality of articles.
Conformance to standards of ethical behavior is therefore expected of all parties involved: Authors, Editors, Reviewers, and the Publisher.
In particular,
Authors: Authors should present an objective discussion of the significance of research work as well as sufficient detail and references to permit others to replicate the experiments. Fraudulent or knowingly inaccurate statements constitute unethical behavior and are unacceptable. Review Articles should also be objective, comprehensive, and accurate accounts of the state of the art. The Authors should ensure that their work is entirely original works, and if the work and/or words of others have been used, this has been appropriately acknowledged. Plagiarism in all its forms constitutes unethical publishing behavior and is unacceptable. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable. Authors should not submit articles describing essentially the same research to more than one journal. The corresponding Author should ensure that there is a full consensus of all Co-authors in approving the final version of the paper and its submission for publication.
Editors: Editors should evaluate manuscripts exclusively on the basis of their academic merit. An Editor must not use unpublished information in the editor's own research without the express written consent of the Author. Editors should take reasonable responsive measures when ethical complaints have been presented concerning a submitted manuscript or published paper.
Reviewers: Any manuscripts received for review must be treated as confidential documents. Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should be conducted objectively, and observations should be formulated clearly with supporting arguments, so that Authors can use them for improving the paper. Any selected Reviewer who feels unqualified to review the research reported in a manuscript or knows that its prompt review will be impossible should notify the Editor and excuse himself from the review process. Reviewers should not consider manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.