Evaluations of surface temperature variation in the Itapeva lake through satelite images

Authors

DOI:

https://doi.org/10.5902/2179460X39436

Keywords:

Surface temperature, Shallow lakes, MOD11A1, Landsat

Abstract

The role of temperature in water is fundamental for the community aquatic dynamics once it regulates several processes on different scales. The spatial and temporal variability of water temperature can be assessed by satellite images, which allows a better understanding of ecosystems. In this work, we evaluated the surface temperature variation of Itapeva Lake, located in Rio Grande do Sul, Brazil, between 1985 and 2017, using MOD11A1 product and images Landsat 5, 7 and 8. An homogeneous seasonal variation pattern was identify between the two sensors used. The information provided by MODIS and Landsat has a coefficient R2 = 0.91 and RMSE = 2.32 ° C. The analysis between the Landsat series adjusted data and the original data allowed the smoothing of maximum and minimum temperatures of water, reducing biased records. Water temperature for the summer and autumn months increases, while for the winter season the regime decrease. However, the surface temperature response may be better understood by involving climatic variables in the study.

Downloads

Download data is not yet available.

Author Biographies

Itzayana Gonzalez Avila, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS

Doutorado em andamento em Recursos Hidricos e Saneamento Ambiental pela Universidade Federal do Rio Grande do Sul.

Alfonso Risso, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS

Doutorado em Sensoriamento Remoto pela Universidade Federal do Rio Grande do Sul.

Mauricio Andrades Paixão, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS

Doutorado em andamento em Recursos Hídricos e Saneamento Ambiental pela Universidade Federal do Rio Grande do Sul.

References

BARNES, W. L. et al. Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1. IEEE Transactions on Geoscience and Remote Sensing, 36(4), 1088–1100, 1998.

CARDOSO LM, SILVEIRA ALL, MARQUES DMLM. Rate of change of the phytoplankton community in Itapeva Lake (North Coast of Rio Grande do Sul, Brazil), based on the wind driven hydrodynamic regime. Hydrobiologia. 2003;497:1–12.

CASTRO D, ROCHA CM. Qualidade das águas da bacia hidrográfica do Rio Tramandaí. 1st ed. Porto Alegre: Sapiens; 2016.

CHANDER, Gyanesh; MARKHAM, Brian L.; HELDER, Dennis L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote sensing of environment, 2009, vol. 113, no 5, p. 893-903.

CURTARELLI M, ALCANTARA E, RENNO C, STECH J. Effects of cold fronts on MODIS-derived sensible and latent heat fluxes in Itumbiara reservoir (Central Brazil). Advances in Space Research. 2013; 52: 1668-1677.

DENG, Chengbin; WU, Changshan. Examining the impacts of urban biophysical compositions on surface urban heat island: A spectral unmixing and thermal mixing approach. Remote Sensing of Environment, 2013, vol. 131, p. 262-274.

EDINGER JE. The response of water temperatures to meteorological conditions. Water Resour. Res., 1968; 4(5):1137–1143.

FANG, X. S. . Simulations of climate effects on water temperature, dissolved oxygen, and ice and snow covers in lakes of the contiguous United States under past and future climate scenarios. Limnol Oceanogr. 2009 54, 2359 –2370.

HORNE, A. J., E GOLDMAN, C. Limnology McGraw-Hill. 1994 .New York.

HULLEY, G. C. et al. Optimized split-window coefficients for deriving surface temperatures from inland water bodies. Remote Sensing of Environment, 115(12), 3758–3769, 2011.

IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 p.

JIMÉNEZ E SOBRINO JA. A generalized single-channel method for retrieving land Surface temperature from remote sensing data. Journal of Geophysical Research. 2003; 108(D22): 4688.

JIMÉNEZ-MUÑOZ, J. C., Cristóbal, J., Sobrino, J. A., Sòria, G., Ninyerola, M., & Pons, X. Revision of the single-channel algorithm for land surface temperature retrieval from Landsat thermal-infrared data. IEEE Transactions on geoscience and remote sensing, 2009; 47(1), 339-349.

KENAWY AM et al. Daily temperature extremes over Egypt: Spatial patterns, temporal trends, and driving forces. Atmospheric Research. 2019, 226: 219-239.

KILPATRICK KA, PODESTA G, WALSH S, WILLIAMS E, HALLIWELL V, SZCZODRAK M, BROWN OB, MINNETT PJ, EVANS R. A decade of sea surface temperature from MODIS. Remote Sensing of Environment. 2015; 165:27-41.

MUNAR, Andrés Mauricio, et al. Coupling large-scale hydrological and hydrodynamic modeling: Toward a better comprehension of watershed-shallow lake processes. Journal of hydrology, 2018, vol. 564, p. 424-441.

MUNAR, Andrés Mauricio, et al. Assessing the large-scale variation of heat budget in poorly gauged watershed-shallow lake system using a novel integrated modeling approach. Journal of Hydrology, 2019, vol. 575, p. 244-256.

LAMARO AA, MARINELARENA A, TORRUSIO SE, SALA SE. Water surface temperature estimation from Landsat 7 ETM+ thermal infrared data using the generalized single-channel method: Case study of Embalse del Río Tercero (Córdoba, Argentina). Advances in Space Research. 2013; 51:492-500.

LISSNER, Juliane Beatriz; GUASSELLI, Laurindo Antonio. Variação do Índice de Vegetação por Diferença Normalizada na lagoa Itapeva, litoral norte do Rio Grande do Sul, Brasil, a partir de análise de séries temporais. Sociedade & Natureza, 2013, vol. 25, no 2, p. 427-440.

LUZ GA, GUASSELLI LA, ROCHA D. Temperature surface of Guaíba Lake, RS, from time series of MODIS images. Brazilian Journal of Water Resources. 2017;22:1-12.

PIRES, A., PF; SRIVASTAVA, D.S.; FARJALLA, V. F. Is biodiversity able to buffer ecosystems from climate change? What we know and what we don’t. BioScience, 2018, vol. 68, no 4, p. 273-280.

O’REILLY, CS et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 2015; 42:773-781.

R CORE TEAM . (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. Obtenido de https://www.R-project.org/.

PAREETH S, SALMASO N, ADRIAN R, NETELER M. Homogenized daily lake surface water temperature data generated from multiple satellite sensors: A long-term case study of a large sub-Alpine lake. Scientific Reports. 2016; 6(31252):1-14.

PRATS J, REYNAUD N, REBIERE D, PEROUX T, TORMOS T, DANIS PA. LakeSST: Lake Skin Surface Temperature in French inland water bodies for 1999-2016 from Landsat archives. Earth System Science Data. 2018; 10: 727-743.

SCHNEIDER, K.; MAUSER, W. Processing and accuracy of Landsat Thematic Mapper data for lake surface temperature measurement. International Journal of Remote Sensing, 1996, vol. 17, no 11, p. 2027-2041.

SEKERTEKIN, A.; BONAFONI, S. Land Surface Temperature Retrieval from Landsat 5, 7, and 8 over Rural Areas: Assessment of Different Retrieval Algorithms and Emissivity Models and Toolbox Implementation. Remote Sensing, 2020, vol. 12, no 2, p. 294.

SIMA S, AHMADALIPOUR A, TAJRISHY M. Mapping surface temperature in a hyper-saline lake and investigating the effect of temperature distribution on the lake evaporation. Remote Sensing of Environment. 2013; 136:374-386.

SCHMID MH, HUNZIKER S, WUEST A. Lake surface temperatures in a changing climate: a global sensitivity analysis. Climatic Change. 2014; 124:301–315.

TAVARES et al. Comparison of methods to estimate lake-surface-water temperature using Landsat 7 ETM+ and MODIS Imagery: case study of a large shallow tropical lake in Southern Brazil. Water. 2019a, 11(168): 1-21.

TAVARES M., MARQUES D., FRAGOSO C.R. Combinando modelo de temperatura da água e sensoriamento remoto para estimar o efeito da mudança climática sobre a temperatura da lagoa Mangueira-RS. XXIII Simpósio Brasileiro de Recursos Hídricos. 2019b. ISSN 2318-0358.

TOFFOLON M, PICCOLROAZ S, MAJONE B, SOJA AM, PEETERS F, SCHMID M, WUEST A. Prediction of surface temperature in lakes with different morphology using air temperature. Limnol. Oceanogr. 2014; 59(6):2185-2202.

TORBICK NB, ZINITI B, WU S, LINDER E. Spatiotemporal Lake Skin Summer Temperature Trends in the Northeast United States. Earth Interactions. 2016; 20:1-25.

WAN, Z. New refinements and validation of the MODIS land-surface temperature emissivity products. Remote Sens. Environ. 112, 59–74, 2008. https://doi.org/10.1016/j.rse.2006.06.026.

WAN, Z.; DOZIER, J. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens. 34, 892-905, 1996.

WENG Q, FU P, GAO F. Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data. Remote Sensing of Environment. 2014, 145:55-67.

WLOCZYK, Carolin, et al. Sea and lake surface temperature retrieval from Landsat thermal data in Northern Germany. International Journal of Remote Sensing, 2006, vol. 27, no 12, p. 2489-2502.

WOOLWAY, R. I. et al. Diel surface temperature range scales with lake size. PLoS One, 11(3), e0152466), 2016. doi:10.1371/journal. pone.0152466.

YANG K, YU Z, LUO Y, YANG Y, ZHAO L, ZHOU X. Spatial and temporal variations in the relationship between lake water surface temperatures and water quality – A case study of Dianchi Lake. Science of the Total Environment. 2018;624:859-871.

YANG, Kun, et al. Spatial‐Temporal Variation of Lake Surface Water Temperature and Its Driving Factors in Yunnan‐Guizhou Plateau. Water Resources Research, 2019, vol. 55, no 6, p. 4688-4703.

ZHANG, Qi, et al. An investigation of enhanced recessions in Poyang Lake: comparison of Yangtze River and local catchment impacts. Journal of Hydrology, 2014, vol. 517, p. 425-434.

Published

2020-12-31

How to Cite

Gonzalez Avila, I., Risso, A., & Paixão, M. A. (2020). Evaluations of surface temperature variation in the Itapeva lake through satelite images. Ciência E Natura, 42, e103. https://doi.org/10.5902/2179460X39436