ESTIMATING LATENT HEAT FLUX OVER RESERVOIRS USING AN ARTIFICIAL NEURAL NETWORK

Authors

  • Dornelles Vissotto Junior Professor Adjunto Departamento de Engenharia e Tecnologia Florestal Setor de Ciências Agrárias Universidade Federal do Paraná
  • Lucas Emílio Bernardelli Hoeltgebaum Bolsista de Mestrado Programa de Pós Graduação em Engenharia Ambiental Setor de Ciências Exatas Universidade Federal do Paraná
  • Ricardo Carvalho de Almeida Professor Adjunto Departamento de Engenharia e Tecnologia Florestal Setor de Ciências Agrárias Universidade Federal do Paraná

DOI:

https://doi.org/10.5902/2179460X20264

Keywords:

Latent heat flux. Lakes. Neural network. Eddy covariance. Micrometeorology.

Abstract

Micrometeorology monitoring has been used in reservoirs for latent heat flux measurements by eddy covariance. It is hard to establish long and continuous measurement datasets due to the complexity involved in this monitoring. When fails occur there is necessary a gap filling procedure to keep the continuity of the series. This filling could be performed through statistical techniques and use of model results. In this work we assessed the performance of a backpropagation Artificial Neural Network (ANN) Model to estimatives of latent heat fluxes at Furnas Lake – MG to fill the gaps in 50 days measurement dataset. The ANN was applied using various sets of input parameters, layer structures and trainning time. The performance of ANN estimatives were compared of a classic mass transfer model. The index of agreement are used to evaluate the performance of the models. The ANN Model index of agreement equal to 0.93536 showing better results than transfer model with 0.89681. The results showed that the ANN could be used with great performance to estimate latent heat flux and gap filling.

Downloads

Download data is not yet available.

References

Aubinet, M., Vesala, T., Papale, D. (Eds) (2012). Eddy Covariance: A

Practical Guide to Measurement and Data Analysis. Springer, Dordrecht,

Heidelberg, London, New York.

Brutsaert, W. (1975a). The roughness length for water vapor,

sensible heat and other scalars. Journal of Atmospheric Science,

, 2028--2031.

Brutsaert, W. (1975b). A theory for local evaporation (or heat

transfer) from rough and smooth surfaces at ground level. Water

Resources Research, 11, 543--550.

Cancelli, D. M., Dias, N. L., Chamecki, M. (2012). Dimensionless criteria for

the production-dissipation equilibrium of scalar fluctuations and their

implications for scalar similarity. Water Resources Research,

(10), http://dx.doi.org/10.1029/2012WR012127.

Dias, N. L., Kan, A., Grodzki, L., Sanchez, S. D., Vissotto Jr., D. (2002). O

método de covariâncias turbulentas atenuadas (MCTA) para medição

dos fluxos de calor sensível e latente: aplicação

ao lago de Itaipu e seu redor. Revista Brasileira de Recursos Hídricos,

(1), 143--160.

Dias, N. L., Cancelli, D. M., Vissotto Jr., D. (2008). Desafios e lições da

medição moderna de evaporação em grandes lagos. Em: CDROM Anais II

Simpósio de Recursos Hídricos do Sul-Sudeste, Associação Brasileira de

Recursos Hídricos.

Dias, N. L., Cancelli, D. M., Vissotto Jr., D. (2010). Directional analysis

of over-lake water vapor and heat fluxes. Em: EOS Trans AGU 91(26)

Meet. Am. Suppl., American Geophysical Union, Foz do Iguaçu, Brazil, pp.

Abstract H21A--01.

Fausett, L. (1994). Fundamentals of Neural Networks: Architectures,

Algorithms, and Applications. Prentice-Hall, Inc..

Foken, T., Göckede, M., Mauder, M., Mahrt, L., Amiro, B. D., Munger, J. W.

(2004). Handbook of Micrometeorology. A Guide for Surface Flux

Measurements, Kluwer, Dordrecht, Cap. Post-field data quality control, pp.

--208.

Lee, X., Massman, W. J., Law, B. E. (Eds) (2004). Handbook of

Micrometeorology. A Guide for Surface Flux Measurements. Kluwer, Dordrecht.

Melesse, A. M., Hanley, R. S. (2005). Artificial neural network application for

multi-ecosystem carbon flux simulation. Ecological Modelling,

, 305--314.

Mishra, A. K., Desai, V. R. (2006). Drougth forecasting using feed-forward

recursive neural network. Ecological Modelling, 198, 127--138.

Moriasi, D. N., Arnold, J. G., Liew, M. W. V., Bingner, R. L., Harmel, R. D.,

Veith, T. L. (2007). {Model evaluation guidelines for systematic

quantification of accuracy in watershed simulations. Transactions of

the ldots, 50(3), 885--900,

http://swat.tamu.edu/media/1312/moriasimodeleval.pdf,

eprint{0001-2351.

Nash, J., Sutcliffe, J. (1970). River flow forecasting through conceptual

models part i — a discussion of principles. Journal of Hydrology,

(3), 282 -- 290,

http://www.sciencedirect.com/science/article/pii/0022169470902556.

Ooba, M., Hirano, T., Mogami, J. I., Hirata, R., Fujinuma, Y. (2006).

Comparisons of gap-filling methods for carbon flux dataset: A combination of

a genetic algorithm and an artificial neural network. Ecological

Modelling, 198(3--4), 473--486.

Schmidt, A., Wrzesinsky, T., Klemm, O. (2008). Gap filling and quality

assessment of co2 and water vapour fluxes above an urban area with radial

basis function neural networks. Boundary-Layer Meteorology,

(3), 389--413.

Scientifc, C. (1996). Eddy correlation system: instruction manual.

Campbell Scientifc, Inc., Logan, Utah, USA, 9º edn.

Vissotto Jr., D., Dias, N. L. (2013). Método empírico para determinação

de outliers em séries de fluxos de dados micrometeorológicos

pós-processados. Ciência e Natura, Especial, 150--152.

Vissotto Jr, D., Dias, N. L., Cancelli, D. M. (2009). Uma avaliação

sistemática das correções do método de covariâncias turbulentas

atenuadas para a medição de evaporação em lagos. Em: Anais, CD-ROM

XVIII Simpósio Brasileiro de Recursos hídricos, Associação Brasileira de

Recursos hídricos.

Web, E. K., Pearman, G. I., Leuning, R. (1980). Correction of flux measurements

for density effects due to heat and water vapor transfer. Quaterly

Journal of Royal Meteorological Society, 106, 85--100.

van Wijk, M. T., Bouten, W. (1999). Water and carbon fluxes above european

coniferous forest modelled with neural network. Ecological Modelling.

Willmott, C. J. (1981). On the validation of models. Physical Geography,

(2), 184--194,

http://www.tandfonline.com/doi/abs/10.1080/02723646.1981.10642213.

{Willmott, C. J. (1982). {Some Comments on the Evaluation of Model

Performance. Bulletin of the American Meteorological Society,

, 1309--1369.

Willmott, C. J., Robeson, S. M., Matsuura, K. (2012). A refined index of model

performance. International Journal of Climatology, 32(13),

--2094, http://dx.doi.org/10.1002/joc.2419.

Published

2016-07-20

How to Cite

Vissotto Junior, D., Hoeltgebaum, L. E. B., & Almeida, R. C. de. (2016). ESTIMATING LATENT HEAT FLUX OVER RESERVOIRS USING AN ARTIFICIAL NEURAL NETWORK. Ciência E Natura, 38, 361–366. https://doi.org/10.5902/2179460X20264